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Abstract

Bacteria can be said to be small particles in terms of their volume and can be modelled 

as near-index particles when the average refractive index of their body is close to that of 

the medium in which they are suspended. This is the case with water based environments 

whereas the bacterial scatterer is said to be a ‘soft particle’ and within the Rayleigh-Debye 

experimental bounds of applicability. However, discrepancies in the past have illustrated 

insufficiency of geometric assumptions, such as spherical symmetry and simplistic inter­

nal structures, as well as the assumption of ‘transparency’ of the particle.

The aim of this work is to generalize the Rayleigh-Debye approximation in order 

to apply them to a wider class of not necessarily soft scatterers, hence departing from 

\m  — 1| <C 1 to \m  — 1| <  1. We start by establishing a connection between the as­

sumption on the functional expression of the internal field of small particles and that of 

the function of refractive index, to a generalisation for arbitrary number o f layers within 

a particle of spherical symmetry. Based on the modification of the Rayleigh-Debye ap­

proximation (mRDG) with Bessel functions we proceed to formulate an extended version 

of the arbitrary layers particle for ellipsoidal forms. An application of this n-layer gener­

alised mRDG to the bacterial domain optical properties via simulation, re-establishes the 

limits of the Rayleigh-Debye approximation as a result of the internal field modification.

Finally, we consider the problem of populations of cells modelled as multilayered 

geometrical structure, consistent with assumptions from bacteriology concerning size dis­

tributions and their relationship to statistical frequency functions. The latter problem is 

examined both when the independent scattering condition is satisfied and when it is vio­

lated, leading to increased probability of multiple scattering. Examination of ensembles 

of inhomogeneous particles was possible due to our generalised approximation which is 

essentially acting on any infinitesimal volume, within the boundaries of the said layered 

structured particles, and is the main result of this work. The mathematical treatment pre­

sented within this thesis acts as an extension of the known near-index techniques in the 

theory of scattering for unlimited number of layers and internal distributions of refractive 

index.
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Chapter 1 

Introduction

“A likely impossibility is always preferable to an unconvincing possibility” 
Aristotle, Rhetoric

Light scattering is the secondary radiation scattered by the induced oscillatory motion 

of protons/electrons within an obstacle when illuminated by a light source. This sec­

ondary radiation relates to the heterogeneity of the system (i.e. the collection of particles 

constituting the obstacle). As a result the interaction of a beam of light with any medium 

will result in the rise of scattering also known as density fluctuations. Other types of 

fluctuations also appear, for example concentration and orientation fluctuations. However 

when we are interested in the light scattering by particles, a fluctuation is not a particle 

in that sense. After all, scattering by fluctuations is usually much less than scattering by 

particles [4, p 7] [5]. However, there have been many attempts to identify the applicability 

of low angle scattering and the theory of fluctuations but most are limited to studies of 

biological motion [6] or chemotaxis, that is movement of cells from one band of the liquid 

media to another, and relating to the swimming speed of motile organisms [7], as well as 

rotational-translational effects on the scattering spectra at forward scattering angles [8].

Even though we are interested in the microscopic world (small particles), one would 

in theory solve the heterogeneous particle problem defined within Maxwell equations. 

In that sense, [9] was the first to provide a solution to the scattering and absorption by 

homogeneous spheres. Since then several papers have appeared that refine and extend the 

theory to non-symmetrical particles by assumptions on spherical equivalents, sphere with 

inclusions and others ([10, for example]).

Under the paradigm of biological cells and in particular bacterial cells, it has been 

indicated that laser scattering techniques, even though not a panacea, will play a sig­

nificant role in partial identification, characterisation and clinical examination of such
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samples [11]. For example in [12, 13], angular light scattering data obtained from a go- 

niometric module are interpreted by means of a 2-layer Mie model [4, pp 181-184],

However, most prokaryotic cells are of a complex makeup. In general 'the cell presents 

a structure that consists mainly of the cell wall, the plasma or cytoplasmic membrane, the 

cytoplasm and the nucleoid. Therefore, in order to generate a more accurate representa­

tion of the cell, one would model it as having various compartments within its volume 

and within these compartments the refractive index is different from that of the surround­

ing objects. In cells where the overall morphology can be approximated as that of a 

sphere (e.g. cocci), each of the structures internal or external to the plasma membrane 

can be modelled as a different layer in an n-layered spherically symmetric inhomoge- 

neous particle. Not many experimental studies appear in the literature, as we report in 

subsequent chapters. In this work we are interested in modelling the bacterial cell as a 

non-homogeneous body of assumed geometrical shape.

Finally, the models we have developed do not apply only to bacteria. Other examples, 

within the boundaries of applicability of our models, include characterisation of anthro­

pogenic aerosols from lidar sounding data, which contain multiple layers of soil erosion, 

salt, soot, organic and other compounds or even that of atmospheric sensing where the 

raindrop particles can be characterised by multiple layers of water of different thickness 

and composition (e.g. multiple ice/ liquid/ ice interfaces and so on).

Aims and organisation of the thesis

In the early days of our research we were interested in scattering from bacteria in water 

at low angles, that is to say when the scattering angle 9 is within 10 degrees with respect 

to the radiation incidence. Some prior experimental work on these instrumentation setups 

indicated that there is a strong correlation with increased scattering as concentration in­

creases by the use of, say, temperature applied on the sample over some period of time. 

However, concentrations alone would not lead to at least partial identification. That is 

to say, we are interested in models that may lead to identification protocols. As a result, 

we follow the line of research that is indicated in the literature as one that may lead to 

this aim: hence, scattering patterns of angular dependence. Even so, not many studies for 

bacteria appear where the bacterium is examined as a strongly inhomogeneous particle. 

Furthermore, limiting cases in terms of the cell’s geometry have been theoretically exam­

ined, mainly due to the lack of inhomogeneous models within the near-index regime.

As such the general problem we have investigated can be said to be the modelling of 

the true physical meaning of the internal composition of bacteria in terms of scattering in
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all directions through mathematical simulation with both deterministic and stochastic el­

ements. By the term ‘physical meaning’ we imply the identification of physical structure 

rather than the direct identification of a specific bacterium. As such, commonly used mod­

els explore the idea by examining the biological cell as having a limited number of layers. 

In our work we propose that the bacterial cell must be investigated as an n-layer structure 

by extending a modification on the Rayleigh-Debye or Bom approximation applicable in 

the near-index regime, as is the case with bacteria in water based environments.

Applying our models as proposed within this thesis, that is a ‘predetermined geometri­

cal shape’ with an arbitrary number of layers, one would first explore the effect of altering 

the parameters of size overall (s) and per layer (s*), investigating values for the relative re­

fractive index (m*, i =  1 , 2 , . . . ,  n) and then infer, using some test statistic, the best model 

which may lead to partial identification. The predetermined geometric shape which we 

refer to is in fact either spherical or ellipsoidal/spheroidal. For a sphere of radius r  the 

spherical shape is defined at a centre point (x D, yQ, zQ) by the expression

(x -  x a)2 (y  -  yQ)2 (z -  z0)2 =
r p l  fp  2

whilst an ellipsoidal shape of semi-axes (a, 6, c) is defined by the expression

(x ~  x 0)2 (y -  y0)2 (z -  z0)2 
a2 b2 c2

A spheroidal shape is an ellipsoid, that has an axis of symmetry. For example, sym­

metry about the z-axis, whereby a = b ^  c, and for other alternative combinations (b = c 

or a =  c). To the best of our knowledge we are the first to theoretically examine the cell as 

an n-layer structure and to propose such a mathematical extension within the near-index 

boundaries (m <  1.35), at the far-field observation points at distance R  (where R  s).

In the first part of this thesis (Chapters 2 and 3), we review literature on light scattering 

for bacterial cells and develop a model for bacteria that have spherical shapes and inho­

mogeneous internal structure. We proceed to generalizing a modification to the Rayleigh- 

Debye approximation, which seeks to extend the applicability limits of the Rayleigh the­

ory. In that respect, we generalise from homogeneous spheres to spherical particles that 

may be modelled as having an arbitrary number of layers. Following this generalisation, 

we first establish the relationship between the popular 2-layer spherical models and our 

generalisation when n  =  2. This leads to the question of how this affects the applicability 

limits of our mathematical model. After finding in the literature the exact Mie solution 

to the problem, known as the Volkov-Kovach solution, we have implemented a computer 

algorithm that follows this solution and have constructed relative difference mappings for
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our approximating mathematical model. In these chapters, there are several notes and ob­

servations reported on the physical meaning of our findings on functional behaviour and 

we relate them to realisations of experimental value.

In the second part of the thesis (Chapters 3 and 4), the aim was to extend the spher­

ical model to any ellipsoidal geometric form using the basis we have built in proofs and 

discussions . We provide a new method for solving the multi-layered ellipsoidal problem 

and we show the effect of non-sphericity to the scattering pattern. Hence we illustrate 

that the relation of the number of peaks of the scattering pattern to size may lead to erro­

neous results. Furthermore we show that there is a dependence of backscattering on the 

three-dimensional scattering, hence there is a need for experiments that adapt this feature 

in the instrumentation setups. Finally, we devise experiments for populations where the 

condition of independent scattering is not violated. We devise a new frequency function 

for bacterial size distributions and apply it to a scattering ratio that has been proven to 

emphasize the backscattering effect. At the end of this part of the thesis we illustrate how 

our method can be applied to the case of super-spheroids, defined by

\ X - X 0 \* +  \ y - j ^ + \ z - z X = l  n > 2
an bn c

from which we were unable to infer an analytic expression.

In the third part of the thesis (Chapter 5) the aim was to investigate how our models 

would be used in cases where the independent scattering condition is violated. In that 

respect we have built an algorithm that generates such positions in three dimensional 

space, but avoiding the case of binding of cells, which can only be seen in water treatment 

processes in which we are not interested. That is to say that throughout the thesis, the 

major assumption is that the mathematical models developed will be used on samples 

from drinking water networks and in real time. Hence models that require extensive 

computational power are not considered.

We have also extended the Rayleigh-Debye phase function so as to apply for increased 

values of relative refractive index and for multiple layers. Incorporating this new function, 

the multiple scattering effects on simulations of closely packed ensembles was possible. 

By numerical evaluation we have illustrated once again the need for detecting backscat­

tering even though there is an apparent ‘washing-out’ of distinct features. Furthermore, 

asymmetry in the polar scattering pattern also justifies the use of multilayered internal 

structures of closely packed ellipsoids, even though there is an apparent limit on the num­

ber of layers to be used; namely up to 5 layers for increased numbers of cells, within a 

sample’s volume.
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Finally, in Chapter 6, the main results and conclusions of the thesis are outlined. Our 

main contributions are summarised as:

• Implementation of the computer algorithm for the n-layer exact solution

• A generalised solution to the n-layer near index problem based on modification to 

the Rayleigh-Debye approximation.

• A theoretical verification that limits of our generalised approximation with respect 

to the average relative refractive index cover a significant part of the bacteria do­

main.

•  A theoretical study on the relative difference between the exact solution and our 

generalised approximation.

•  A new method for determining the scattering amplitude or the form factor from 

particles of no apparent geometrical symmetry and for multi-layered internal struc­

tures.

• A new method for spheroids of multi-layered internal structure, in conjunction with 

a physical justification for polar asymmetry in the scattering pattern.

•  A new procedure for treating populations of cells that exhibit skewed frequencies in 

their linear dimension, as long as the condition of independent scattering is satisfied.

• Implementation of an algorithm for issuing positions and visualisation of media 

densely populated with scattering ensembles where the independent scattering cri­

terion is violated.

•  Modification of the Rayleigh-Debye phase function for densely packed random me­

dia to apply to n-layered ensembles.

• The theoretical finding that asymmetry in the scattering intensity’s profile due to 

orientation and curvature effects is evident, even for densely packed media.

• A numerical evaluation in simulated media closely packed with cells which deploy 

more than 2 layers indicated that there is still enough information to evaluate the 

internal structure. As a result, the common belief that using these algorithms to 

experimental data does not advance our understanding of the internal composition 

of the cell illustrated that this is not the case.
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Areas of future investigation are suggested, such as developing models for comma- 

shaped particles, for particles with spherical or ellipsoidal inclusions and incorporation of 

hybrid cores. Optimisation of optical parameters as means of solving the inverse problem 

by approximation is also suggested.
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Chapter 2 

A review of light scattering: 
functions, patterns and bacterial cells

The formulation of the problem of light scattering or diffraction can be said to be simple. 

Let vector E* denote the incident field on a scatterer(s) of volume V \ the re-constructed 

field inside the scatterer is denoted by E (r) where vector r  denotes the distances within 

the boundaries of the cell, and the scattered field by vector E s. From Maxwell’s equations 

one should find the total field equal to E (r) inside V  and to E* +  E s outside V  such that it 

satisfies the boundary conditions over V. Despite the simplicity of the scheme the solution 

depends on the geometric properties of the scatterer and its structure. Biological cells are 

in general of no specific structure. Furthermore the problem that is of usual experimental 

interest is defined as:

Definition 2.1. From a collection of sufficiently diluted cells, of assumed geometrical and 

optical properties, suspended in a liquid medium, which is illuminated by a laser beam of 

specified polarisation and wavelength, determine the sample’s physical characteristics in 

real-time.

In particular, bacteria in water based environments are considered to be ‘soft-scatterers’, 

and of no specific morphology in terms of internal structure relating to optical proper­

ties. For example, if one assumes a spherical particle, and one models the interior as an 

anisotropic tensor of relative refractive index, a general solution in a closed form cannot 

be obtained [14, 15, 4]. In this section we provide information from the literature that 

results in reasonable assumptions within our problem domain so that the problem can be 

analytically solved. Finally we attempt to link work from the literature towards charac­

terisation and possible identification of bacterial cells via the known instrumentation and 

a priori knowledge for our propositions that follow in subsequent chapters.
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Figure 2.1: A commonly used configuration for multi angle light scattering measure­
ments. The detectors and laser source are placed on the horizontal plane so as to cover 
the range for 6 G (0,7r). Note that the laser source is coplanar with the array of detectors.

2.1 Introduction

To understand what underlies the statements of Definition 2.1 we have to define the terms 

used. The problem is illustrated in Figure 2.1 where the laser source has a defined wave­

length A and polarisation state. The sample is assumed to be contained in a circular 

cuvette with a total volume Vt within which there is a number density pQ that is occupied 

by bacteria cells. The concentration of the cells is assumed to be large enough for the scat­

tered light to exceed the background noise (pQ > 103m l-1), that is scattering by the liquid 

itself, and smaller than the critical density pa < 106m l-1 of solution, so that every cell 

is assumed to scatter light independently. The latter is commonly known as independent 

scattering and the volume limits have been defined experimentally in several publications 

[16, 17, and so on] as a theoretically sound limit has been proved difficult or impossible 

to infer, due to the nature of the geometry and structure of bacteria. Consequently, a size 

distribution for the scatterers is also assumed, usually being that of the normal Gaussian 

density function, hence avoiding violation of the statistical assumption of population nor­

mality in the parent population. Violation of this assumption would lead to difficulties 

in inference of statistical significance which is of importance in many applications, for 

example clinical trials. That is to say, non-parametric testing would have to be employed 

for every experiment of the kind shown in Figure 2.1.



For real-time identification, following Greenberg et.al. in [11, pp 9:22 -  9:24], the 

most rapid of tests is the fluorometric, by which method the release of carbon dioxide 

(C 02) is measured and detection of waterborne faecal coliforms is possible. The test is 

said to take place in about 1 hour. However it is very specific, that is to say, different 

protocols must be used for different bacteria genera. As a result the aim of any test in 

terms of time effectiveness for water samples must be within this time restriction. This 

applies to all research prototype methods. Concerning light scattering, it has been noted 

by Ulanowski [18] that light scattering equipment can produce patterns of angular de­

pendence within minutes, and following Wyatt [19] we can determine within another 20 

minutes the external morphology, that is to say the geometric shape, of the cell. To char­

acterise the cell, we need to infer the optical properties and correlate them with some 

microbiological measure. To infer the optical properties from the scattering patterns we 

then need to use some theoretical background (Section 2.4). A system is said to be real­

time when the computation taking place is rapid, that is, fast enough to affect the input 

as it happens. As a result, the process of characterising bacteria cannot be said to be 

in real-time. However, the characterisation would be defined as such when a proposed 

method and computational algorithm do not significantly add in time to the characterisa­

tion process. This is what we refer to as real-time: the time taken for the computations 

within the algorithm.

Finally, by liquid medium we refer to the environment of interest, that is to say, water 

based environments from which abstraction of drinking water is possible. Thus airborne 

bacterial cells are excluded.

2.2 Bacterial cells: morphology and relation to optical properties

Bacteria are single cell (unicellular) organisms considered to be biologically extremely 

small in terms of size and multiply by cell division. Some are important agents in the 

cycles of nitrogen, carbon and other matter whilst others are pathogenic, causing dis­

ease to humans and animals. They can be found virtually in all environments and are 

included in the division of Prokaryotic Cells and have many important characteristics 

relating to their shape and internal structure. These features, extracted from the charac­

teristics found, are used in order to name them following the Bacteriological Code [20] 

established by the International Committee o f Systematic Bacteriology. The description

Prokaryotes are considered to be direct descendants of the oldest forms of life, i.e. unicellular or­
ganisms. It is noted that in biology the greatest gap, missing link, is the question of how Eukaryotes 
(multicellular organisms) appeared and how did they evolve.
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Bacteria

Archaea

Firmi cutes

DIVISION ------------------------
(PHYLA)

ThinCdlW all Thick Cell W dl W a ll- le ss  Unusual Cell Walls
Gram(-) Gram(+)

CLASS ---------------

Ptoto^ttetic Cyanobacteria Rods, Coed Actinomycetes, Mycoplasmas

Figure 2.2: A classification system based on the Gram reaction of the cell; that is to say 
the behaviour, structure of the cell wall

that is attached in this naming code includes, amongst others, morphological characters, 

occurrence of cells as a result of multiplication by binary-fusion, ability of encapsulat­

ing and producing spores, as well as their reaction to Gram stain. What complements 

these characteristics are the enumeration of physiological and biochemical characteris­

tics, which cannot be directly monitored using light scattering. To avoid the demands 

of either taxonomy or a phylogenic system of classification, one would resort to a more 

pragmatic, artificial classification, which groups organisms according to their similari­

ties. The most complete work of such descriptive bacteriology is ‘Bergey’s manual of 

Systematic Bacteriology’[21], which contains names, descriptions of morphological and 

physiological properties with literature citations and the corresponding determinative key 

of classification. The terminology used is illustrated in Figure 2.2, with an example.

In this classification system, all bacteria can be said to be separated to two domains, 

that is Eubacteria and Archaea, and further on to five kingdoms, from which two appear 

for Eubacteria, namely the proteobacteria and firmicutes. From there several procedures 

have been applied as mentioned earlier to further classify bacteria to corresponding divi­

sions or Phyla. We adopt the most common of them which is separation by Gram staining 

and the reaction that bacteria have to this process2. A fixed bacteria smear, that is the

2Gram reaction is the process o f identification through staining, bearing the name of its inventor

DOMAIN

KINGDOM

Eubacteria

Proteobacteria

10



Capsule 
(condensed polymers)

, i Peptidoglycan 
Sheet

Cytoplasmic
Membrane

Figure 2.3: A Gram (+) cell wall: Chemical composition. Notice that the capsule layer 
only appears if condensed polymers form; this is an indication of virulence.

bacteria prepared on a glass plate, is stained by violet crystal Gram solution, decolourised 

with ethanol and counterstained with a contrasting dye. After rinsing with water, some 

bacteria retain the original stain (Gram positive + ) whilst others retain the conterstain 

(Gram negative —). For identification purposes, the structure of the cell wall plays an 

important role. A Gram positive cell wall is generally described as a rigid structure of 

chemical composition as in Figure 2.3.

The phenomenon of Gram reaction can be explained by behaviour of the cell wall. 

Gram (+) cells have a cell wall with multiple layers, forming a thick rigid structure. As a 

result they are not susceptible to mechanical breakage in that they would sustain the shape 

and controlled porosity to possibly harmful agents such as antibiotics. In fact [1, 22] it 

is noted that the cell wall of Bacillus Anthracis becomes more rigid with increased doses 

of chlorine in water distribution systems, resulting in increased resistance to antibiotics, 

with possible life expectancy of up to two years. On the other hand Gram negative cells 

have a thin cell wall and are not as dense as their positive counterparts. In terms of light 

scattering one would, for example, try to link the behaviour of any part of the cell, in the 

current example the cell wall, with optical properties and in effect try to infer a similar 

classification system.

By employing the Lorentz-Lorenz formula as derived for optical frequencies com­

monly known as the Clausius-Mossoti equation [23] so that

m 2 — 1 M  _  N Aa 
m 2 +  2 D  3

(2.1)
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where the right hand side of the equation is commonly known as the ‘molar refraction’ 

with M  being the molecular weight and D  being the molecular density. N a is the Avo- 

gadro’s number, a is the polarisability of the molecule and m  is the relative refractive 

index defined as the refractive index of the cell, or cell part, divided by the refractive 

index of the medium in which it is suspended. Rearranging the terms and taking into 

account the known fact from analytical chemistry [24] that the molar refraction is solely 

dependent on the sum of refractions of the bonds present in a given molecule, then for 

a mixture of different molecules and as a result for particle consisting of several mole­

cules, as is the case with bacteria, it has been shown [25] that for bacteria the average 

polarisability corresponds to the molar refraction factor

m 2 -  1 N a
a =

m 2 +  2 3 i
where Ni is the number concentration in the molecule and a* is the polarisability of the

i -th molecule; the bacterium is taken to be a homogeneous body.

Bacteria of volume V  are bodies that exceed the molecular level numbers; hence Equa­

tion 2.2 would result in [23]

& = v ~1l ' !̂ v ” v - 1j v ^ v  (2-3)
where a corresponds to the average polarisability of a bacterium of volume V , which is 

now assumed to be a non-homogeneous body. This is a generalisation of Equation 2.2, [25], 

where it was assumed that the cell of volume V  is homogeneous.

As a result, using this term explicitly in any modelling procedure would lead to an ad­

vance in the sciences related to the biochemical properties of the cell. In theory, inference 

of such a term could be applied to any internal structure of the cell and could identify

apparent contributions. The latter would be true, as long as one establishes an experimen­

tal link between the said model and the microbiological properties, for example inference 

of the proportion of water content of the bacterium as in [3] and [26]. Inference , of the 

water content within bacterial cells of specific volume V0 and refraction increment as 

is performed by using

m  — 1 +  csas (2.4)

Cy, — DW{1 -  csV0) (2.5)

a direct result from Equations 2.2 and 2.3 in the proof of Ulanowski [25, Chapter 2], where 

cs is the concentration increment and D w is the water density. We note that both Wyatt
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Sphere Rod like Comma shaped Ellipsoid

Staphylococcus Bacillus subtilis Vibrio Cholerae Escherichia Coli 
aureus

Figure 2.4: Most common bacterial cells in relation to their external morphology. Cor­
responding microscopic images are also provided: Reprinted with permission from Dr D. 
Kunkel (Dennis Kunkel Microscopy © )

and Ulanowski use the assumption m  —> 1, so that [(m2 — l) / ( m 2 +  2)] —» 2(m — l) /3  

and thus accept extremely small phase shifts for light rays entering the medium and body 

within the cell; assuming ‘transparency’ of near-index particles. The reader is advised 

that we return to this aspect in Chapter 3, where we infer our main result and introduce 

our approximation model.

In terms of external morphology, these Prokaryotic cells, which are small in terms 

of size, can be found in many geometric shapes, but they are mainly distinguished [27] 

as rod-like, ellipsoids, curved rods or ‘comma-shaped’, and spherical (Figure 2.4). As 

a result, if one wishes to model bacteria in terms of light scattering or any other type of 

electro-magnetic radiation field, one should attempt to do so for most, if not all, of the said 

morphologies. The rod-like, in shape, bacteria such as the genus Escherichia are usually 

not more than lp m  wide and 5/rni long whilst many Pseudomonads have a diameter of

0.4 — 0.7/im and a length of 2 — 3pm. Spherically shaped bacteria (hence the name cocci3) 

have a diameter varying from 0.6pm, in the case of micrococci, up to 1.1pm. There are a 

few larger forms of bacteria, but they are not commonly found in potable water samples 

and they multiply very slowly [28, 22].

As indicated in Figure 2.5, we have structures internal and external to the cell wall. 

With reference to Figure 2.3, external to the cell wall we may have a formation of poly­

mers, which may be condensed forming an external slime layer, the capsule. This is an

3derived from the Greek word k o k k o s , pronounced ‘coccos’
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Figure 2.5: Schematic of the true structure of the prokaryotic cell. Note that features are 
not shown to scale and have been emphasised to illustrate the multi-layered structure.

indication of virulence, that is to say it may be a predictor of the cell’s ability to cause 

disease, causing the cell to be considered as pathogenic. Taking into account that Wyatt, 

in [19], has shown that polymers in solution can be analytically characterised, indicates 

that morphological features which have similar composition may need to be taken into 

account. That is to say, there is no reason to believe that light scattered from the capsule 

will be negligible, and as a result this morphological feature could be modelled as an ad­

ditional layer in terms of light scattering. Appearance in the model of such a layer would 

result in predicting pathogenic bacteria as opposed to possibly harmless ones.

Structures internal to the cell wall are mainly the Cytoplasmic membrane, the Cyto­

plasm and the nucleoid or Nuclear area. The cytoplasmic membrane is a thin structure 

that encloses the cytoplasm of the cell. It consists primarily of lipids and proteins, but its 

formation is not a rigid structure. However, looking at the manufacturers of light scatter­

ing equipment, both Wyatt [19] and Malvern Instrumentation [29] have shown that char­

acterisation of proteins is feasible using Multi Angle Laser Light Scattering (MALLS). 

Furthermore, in electron micrographs, the cell wall and the cytoplasmic membrane are 

visible as two separate layers where a dark line indicates the rigid cell wall (phase dark) 

whilst a light line (phase light) corresponds to the cytoplasmic membrane. Hence the 

contribution of such a layer would be considered significant and should be included in a 

light scattering modelling procedure. Non-appearance of such a membrane would be a 

predictor of a specific wall-less prokaryote, that is the Actinomycete and the Mycoplasma 

classes. If the cell wall is destroyed by antimicrobial agents then the cytoplasmic mem­

brane is exposed to injury and the cell’s intracellular components are leaked to the external
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medium, leading to cell death.

For bacteria the term cytoplasm will refer to the substance of the cell inside the cyto­

plasmic membrane, that is, enclosed DNA material (nucleoid), ribosomes and so on. Its 

composition is considered to be mainly water; that is, at least 76% [30] to 80% [27]. As 

a result if the cell is suspended in a water based environment then it is obvious that the 

relative refractive index m , defined as the refractive index of the cytoplasm divided by the 

refractive index of the medium, will be very close to unity, hence m  —> 1 or |m — 1| <C 1. 

The nucleoid of a bacterial cell contributes a single long circular molecule of double­

stranded DNA, the bacterial chromosome. The nuclear area can be spherical or elongated 

depending on the cell’s external morphology. As such it can be assumed to follow the 

overall geometrical structure of the rest of the cell, unlike eukaryotic cells. Following, for 

example, the experimental work of Newman in [31], and verifications from several sim­

ulated nucleoids in the literature, it has been found that the contribution of this internal 

structure to scattered light is more significant in the backscattering angles. However, the 

use of simplistic models, as is the case with deployment of no more than 3-layered mod­

els, hybrid or otherwise, makes the finds questionable. It is of no dispute, however, that 

the main structures within the cytoplasm will produce scattering of light, and backscatter­

ing will be more emphasised [31,32] due to the appearance of extra intercellular material, 

hence layers.

Within the cytoplasm, we also have the appearance of other structures which are ex­

ceptionally small and consist of protein and ribosomal RNA (rRNA); hence they have 

been given the name ribosomes. They are not dense and regulate the production of pro­

tein within the cell. In prokaryotic cells, they seem not to contribute to light scattering. 

In any case it would be difficult to model them, as they are randomly dispersed within 

the cytoplasm, and since their refractive index would be very small as well as their size, 

theoretically speaking they are usually ignored. This is not the case with other biolog­

ical cells, hence for the eukaryote cell ribosome modelling must be included, either as 

a function of refractive index or as separate dipoles within the cytoplasm; that is to say, 

dipoles with ‘size’ and optical properties different from those of the surrounding (sim­

ulated) matter within the cell. Examples of such a procedure are the hybrid models of 

simulated cells in [33], stochastic radiation transfer of [34] and a ‘black-box’ procedure 

offered in [35]. We follow the procedure normally used where the ribosomes have too 

small a value of size and refractive index to be taken into account. The same applies for 

all granules which usually serve as energy, gas or sulphur reserves. They can be said to 

be of diagnostic significance, but only in terms of biochemical testing, and not directly
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Figure 2.6: The electron microscopy image of cross section of the Bacillus subtilis en- 
dospore (right). A typical model that appears in most textbooks of microbiology to ex­
plain its structure can be seen on the left.'Note phase light and phase dark regions of the 
microscopy image and the clear relationship with the diagrammatic illustration as shown 
here.

observable by MALLS or light scattering in general.

However, a significant inclusion is the spore, also referred to as endospore. These 

structures are unique to bacteria and are highly durable with thick cell walls. Further­

more, following most microbiology textbooks, endospores have ‘. .. additional internal 

layers’ [36] [27]. They are formed as structures internal to the cell membrane via the 

process of sporulation, and they are released into their environment from the parent cell 

at the germination stage. The free spores may eventually be the same or larger than the 

parent cell’s size, or may be smaller. When they are within the cell they occur either ter­

minally, that is at the end of the cell, or centrally, and are significantly smaller in size. The 

free spores can in theory remain dormant [37] for many years and every vegetative cell 

produces only one spore. After germination the spore is released, and the parent cell dies; 

hence it is not a process of multiplication. Furthermore, the spore itself does not hold a 

mechanism for multiplication. As a result, techniques which are based on the outgrowth 

or multiplication of cells will fail. Furthermore the spore is very difficult to stain, hence 

optical microscopy counting and resulting induction trees of identification are difficult, if 

not impossible, to perform and obtain [38].

How to decide whether the spore is dormant, that is, remains alive but does not alter
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its metabolism or size, or dead is a research question of great experimental interest and 

has yet to be answered. Under the hypothesis that dormancy can be linked with highly 

dehydrated spores, there is still an issue involving the ‘wet’ spore’s water content. The 

total volumetric water content of such spores greatly varies, between 60 and 85%. If one 

takes into account that the ‘wet’ spore is probably completely permeable to water, finding 

the equilibrium of water in say the dominant internal features of Figure 2.6, namely the 

cortex /  protoplast ratio of size and volumetric proportion of water, is problematic. By 

examining a summary of finds for the refractive index by light scattering (Section 2.4, 

Table 2.4) one would observe that vegetative, non-dormant spores have a small relative 

refractive index value which effectively means a less dense cortex (outer layer in the 2- 

layer spherical model); hence they are more permeable, suggesting a larger free water 

content in the protoplast. Even so, in the studies of Jones and Weiss [39] the spores 

of B. megaterium were subjected to high pulses of high energy, i.e. electron radiation. 

Acquiring corresponding spectra from wet and dry spores via a spectrometer, it was found 

that the spores following radiation had spectral signatures which were very similar. As 

a result, it was concluded that it was more likely that the spores normally maintained 

relatively dry regions within. Translating this to the question of how many layers should 

one use in a modelling procedure is open to interpretation; however it should be clear 

that a 2—layer model is too simplistic. It should be clear that the spore is a special case 

of inclusion, one which would be used for separation between bacteria that are able to 

sporulate and those which do not possess this ability, hence providing a taxonomic feature 

of identification [38]. However, in the same work it is noted that the Bacillus genus, 

given its name from the structure within which the spore is enclosed before sporulation, 

is commonly referred to as a rod-like particle when, in fact, it may be more realistic if 

one depicts it as an ellipsoid. Even for Group II Bacillus spores the author notes that they 

are not spherical but ellipsoidal, and that the common misconception derives from the

2—dimensionality of most microscopic observation techniques.

2.3 Candidates for drinking water abstraction:

Bacterial Ecosystem

To understand the complexity involved in the kinds of bacterial species that appear in 

the drinking water environment we present an ecosystem. We then proceed to the le­

gal framework that governs the abstraction of drinking water, and procedures involved
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in the quality monitoring of networks of potable waters. Biological processes in the nat­

ural environment that can be used in theory for abstraction of drinking water to a human 

consumption potable supply network [11] are strongly influencing the physical state and 

quality of water. Such ecosystems are freshwater lakes, water deposits and rivers. Bacte­

ria numbers are influenced mainly by the density of water and the nutrients to be found. 

Water has a maximum density at 4°C however this varies greatly depending upon the 

environment.

Every cell in a bacterial ecosystem has an age and size. The relationship between the 

two is not well understood and has been proved to be exceptionally complicated due to the 

complex biochemical interactions that take place. Furthermore there still exists a debate 

as to whether the mathematical relationship is deterministic or stochastic or a combination 

of the two. However when a cell population grows exponentially there is a greater number 

of smaller cells relative to the population size than that of larger cells. In general large 

cells are considered to be older than smaller cells, but once again this is taken as a heuristic 

result. When cells have reached a steady state of growth then a greater size of larger cells 

as opposed to smaller ones appears. This heuristic observation leads many researchers to 

model populations using the normal distribution where the variability, that is the spread 

of the curve, depends on the rate of inter-divisions of the cells [40] [22, pp253-277]. In 

particular, Stull in [41], by using differential light scattering measurements on 141 in­

dividual bacterial suspensions of Staphylococcus epidermidis and assuming a spherical 

homogeneous body with an average refractive index of 1.388, infers a discrete size dis­

tribution that closely matches, in the continuous sense, the normal frequency function. 

He relies on the assumption that the set of maxima angles in the scattering pattern for 

a particular radius value is unambiguous and he solves the direct problem in two steps. 

In the first step, depending on the number of peaks in the measured data, an appropriate 

range of radii is selected; in the second step, the set of measured peaked angles is fitted 

to the theoretical pattern of scattering. However, the model he employs is homogeneous 

and of spherical symmetry. As we will see in Chapter 4, Figure 4.6, this is not the case if 

theoretical patterns to be fitted on experimental data do not assume an axis of symmetry 

with respect to the incident radiation (Figure 2.1).

However, Cullum in [42] and Koch in [43] make the case for distributions that in­

corporate the skewness effect. Koch, by deploying a number of discrete distributions, 

proposes the use of the Binomial and Poisson frequency distributions for modelling size 

of bacteria in liquid samples. He concludes that the normal distribution should be used 

only when there are many independent sources of random fluctuations. That is to say, even
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between two sister cells of Escherichia coli, there can be identified at least five different 

sources of random fluctuations. To summarise:

1. Change fluctuations: these arise in the synthesis or partitioning of critical macro­

molecules that depend on the bacteria growth

2. Systematic physiological changes: these may have arisen due to environmental vari­

ability (as we will see later in this section) or due to individual variability in cells 

due to inequality in separation during the growth cycle.

3. Behavioural changes: due to regulatory mechanisms of, for example, DNA replica­

tion

4. Mutational changes: as bacteria progress in their evolution, random mutations take 

place so as to adapt to changes in their environment. This may affect the size 

variability directly or indirectly.

5. Genetic change: that is groups of genes may change and production of new species 

may be rendered with new growth, size and division cycle properties.

These five sources of variation are not the only ones [44] but they have been identified 

to be the major contributors. They involve stochastic as well as deterministic elements 

[43] and the distinction as to whether one of the two process modelling procedures should 

be applied may be dependent on the number of critical events. If a few of those sources are 

dominant then distributions that emphasize positive or negative skewness must be used. 

Finally it is stated that continuous distributions, such as the Gamma frequency distribu­

tion, would be a useful alternative, but one should be cautious in the way the continuous 

distribution is fitted to the experimental data [45]. That is to say, when a number of 

samples has been taken there is an associated risk which stems from the sampling pro­

cedure, because if most samples are selected from within a specific range then this may 

not represent the true nature of the distribution (skewness effects may not be evident) 4. 

A model would be inferred if the events per sample are considered to be independent. 

Otherwise, the influence of correlation effects has to be determined in order to investigate 

the underlying relationships before averaging over the whole population.

Freshwater lakes present seasonal variations and temperature zones. For example 

in spring the cold water of a lake is warmed by the sun. As a result, the surface layer is 

warmed up and water in this layer decreases in density. The boundaries between zones can

4Note that this problem is not restricted to continuous distributions
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Figure 2.7: A freshwater lake eco-system and the distribution of bacteria on the layers. 
Waters above the thermocline layer (indicated by the arrow) constitute the epilimnion and 
below the said layer is the hypolimnion.

be very abrupt but, depending on depth, they may persist throughout the seasonal changes. 

However changes in temperature produce an increase of chemical compounds and nutrient 

concentration. Consequently, when deep waters become cooler, the nutrients rise to the 

surface and the bacteria population increases accordingly; the population that resides per 

layer of Figure 2.7 will increase rapidly depending on the nutrient concentrations. The 

metabolism and multiplication of bacteria will increase the biomass production, hence 

bacterial cells will increase in size/volume, as well as in their numbers per m l of water.

In the upper layers (epilimnion) which are penetrated by light, production of biomass 

will be increased and so will phototropic bacteria, for example the Cyanobacteria. In 

this case, oxygen is consumed and aerobic bacteria appear. However, in the lower lay­

ers (hypolimnion) only bacteria that have the ability tp utilise methane emissions will be 

present. This is because the hypolimnion will eventually stop producing oxygen, ren­

dering it completely anaerobic, and only methane will escape in the form of bubbles. 

As a result, anaerobic microbial processes take over. This results eventually in storage 

of a large portion of hydrogen sulphide and, if illumination is suitable, then purple and 

green sulphur bacteria will grow and form the primary biomass production. In this zone, 

appearance of Genera containing gas vacuoles, for example Amoebobacter, as well as 

flagella-propelled, for example Chromatium, is evident.

Natural running waters (streams, rivers), assuming they are not polluted, are in general
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Bio-Agent Detection Limit (per 100ml) Reference Measurement Method
Total Coliforms 500 cells Culture at 37°C and colony counts 

or Dilution in at least three tubes 
and sub-culturing of the positive 
tubes on a confirmation medium 
with Most Probable Number as the 
statistic

Faecal Coliforms 200 cells As above but culture at 44°C is 
recommended

Faecal Streptococci 200 cells Culture at 37°C but for dilution 
use of sodium azide broth is a 
requirement

Salmonella <C 1 cell Concentration by filtration or 
inoculation(s) into pre-enrichment 
medium

Security Related Bacillus anthracis (anthrax), Rapid identification / Average Sta­
Examination Vibrio Cholerae, E.coli bility of bio-agents in water ranges

0157:H7, Yersinia Pestis 
(plague), Shigella dysenteriae, 
Variola major (smallpox)

from 6 days to 11 months

Table 2.1: EU directive 79/869/EEC: Only the bacteriological content for examination 
from possible sources of potable samples is shown. The sample container’s material is 
required to be sterilized glass. Salmonella numbers indicate the necessity for absence 
per 1000ml. The remainder as indicated is taken from recent additions as per [1, 2], the 
Central Disease Control, USA security code.

suitable for human consumption, as concentrations of unicellular organisms appear to be 

very low. However even a suspension of 105 bacterial cells per ml of water does not 

appear turbid to the naked eye. In terms of bacteria, the presence of coliforms, such as the 

Escherichia genus, and other genera (Salmonella and Streptococcus), and sulphur utilising 

bacteria in conjunction with the appearance of a strong smell of hydrogen sulphide, should 

serve as a strong warning signal of the poor water quality.

Until water reaches the human consumption network, several chemical treatment processes 

will have taken place. However there is still a need for microbial screening. Following 

the European Union Directive 79/869/EEC [46], water companies sample water, to com­

ply with this call for screening of 46 substances, of which 4 are bacteria. To these four 

biological agents (or parameters as preferred in the EU terminology), one should add the 

security related screening protocol of the American Public Health Association [1], which 

calls for further screening of bacteria that present a threat to public health and safety. We 

summarise these findings in Table 2.1. !
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Figure 2.8: Light scattering theoretical models and applicability. Note that Mie scattering 
would potentially solve most problems involving small particles provided that a rigorous 
solution could be obtained. On the diagram, (GO): Geometrical Optics and (AD): Anom­
alous Diffraction. We use GO and AD as examples of approximations that would be 
applied for particles having a largest dimension d > 40/xm; for spheres this would be the 
radius for other external morphologies this would mean the major axis. By x  we denote 
the size parameter defined by x  =  2kQd, where d is the scatterer’s largest linear dimension.

2.4 Application of Light Scattering theory to biological cells

In general models derived from light scattering by small particles can be applied to the do­

main of biological cells such as bacteria. However the latter depends on the applicability 

boundaries of the theory to be used. Various methods have been developed throughout the 

years but in most cases they relied on simplifying assumptions on the internal structure 

of the cell. In general Mie theory, which is a rigorous solution, has the widest applica­

bility range (Figure 2.8) as opposed to, for example, approximating theories, such as the 

Anomalous Diffraction (AD) and Geometrical Optics (GO). In Figure 2.8 the range of 

applicability for these theories has been related to the size parameter denoted by x  and 

the relative refractive index, denoted by m. The size parameter is directly proportional to 

the largest linear dimension d of the particle, since by definition x = 2kQd, where kQ is 

the propagation constant at a fixed wavelength A (in vacuo) of incident radiation.

Most commonly used is a two layer model of spherical symmetry and variants of Mie 

scattering as is the case for the problem of a sphere with an irregular inclusion [47] or 

a sphere containing multiple spherical inclusions [48]. These variants would have been 

applied for explaining light scattered from biological cells, and in particular from bacteria 

with spore inclusions. Unfortunately, in the literature we could not trace such works. The



theory of scattering and absorption by small particles can be said to fall under four main 

categories:

1. Exact Methods: In the literature there appear to be three dominant theories. That 

is, solutions from separation of variables (Mie scattering), the T-matrix method and 

the integral equation method.

2. Numerical Methods: The theories that dominate the field are the Coupled Dipole 

Method (CDM - Purcell & Pennypacker) and Discrete Dipole Approximation (DDA 

- Draine & Flatau)

3. Approximate Methods: four dominant theories appear in the literature, that is, 

Rayleigh-Debye or Bom approximation (RDG), Anomalous Diffraction (AD), Geo­

metrical Optics (GO) and the WKB or higher energy approximation

4. Hybrid Methods: that is, appropriate combinations of the above

The most famous and widely used are Mie scattering [9] and the generalised Mie 

solutions [49, for example] as well as its variants, which fall under the separation of 

variables category. An example is the solution of scattering by spheres that are placed 

at close distances (agglomerates) illuminated by a Gaussian beam [50] and presented 

as a superposition of field components method. Any analytic solution depends on the 

number of terms required to terminate the scattering series, with the most commonly used 

criteria outlined in [10]. To take into account inhomogeneities in cells, it is obvious that 

the model had to be extended. In that respect, a solution for the 2-layer model, but for 

a variable outer layer refractive index, has been reported in [5] in the context of bacteria 

and similarly sized biological cells. Most often cited is the simplistic model of a two-layer 

sphere, in [51, 52] and more often in reprints of Bohren-Huffman’s book [4], which has 

been applied throughout the 1970’s. In order to infer optical properties from biological 

cells using this model, in [53,54, 3,55] the particle is considered to be a sphere consisting 

of two concentric layers. This model continues to be extensively used, for example in 

[12, 13, 56], even though the n-layer spherical problem has been proved to have an exact 

solution provided in [57, 58, for example] 5. Other solution methods to the concentric 

multi-layered sphere problem have been provided in the literature [59, 60], but the reader 

is warned that the expressions therein are not explicit.

Unfortunately, the cell is being depicted as having two contributing parts: the core or . 

nucleus and the cell wall or cytoplasm. It must be noted that Wyatt and Ulanowski were

5The codes are not generally available
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the first to link 6 the two layer model with the water content within the cells [12, 61], and 

to perform the first experiments in that respect, but in general we can already intuitively 

understand issues arising from its use. On one hand, a microbiologist or biophysicist 

would immediately identify that the cell wall should be modelled as a separate structure 

(outer layer) and the cytoplasm as an internal layer which incorporates the nuclear area. 

Using this as prior knowledge one should model the cell as having at least three layers. 

Using this assumption, that is a three-layer Mie scattering model as applied to biological 

cells, it may be surprising that only the works of Lopatin [62, 63, ex-USSR publications 

in Russian] are found and are largely unknown, possibly due to the fact that an English 

translation cannot be found. On the other hand, it is often reported in all works cited above 

that on average 20% of the experimental scattering patterns obtained provide ambiguous 

results. This is often attributed to asymmetry, deviation from spherical symmetry, or 

inhomogeneity of the cells. The ambiguous results can be attributed to the inferiority 

of 2-layer or 3-layer models as descriptors of the extinction and scattering of light by 

biological particles/cells even in cases where the cell is expected to be spherical (for 

example, the cocci family of bacteria7 or sporulating bacterial cells8). This is clearly 

supported in [64] where, using electron microscopy, images of cross-sections of Bacillus 

spores were produced. In this study the electron microscopy images were taken after 

negative staining, thin-sectioning and freeze-etching. As a result any inferred values, on 

size or otherwise, are of no use since a destructive technique has been applied; however 

the finds on structure are significant. For it was reported that the Bacillus spores present 

a structure resembling a 4-layer model, where the cell wall structure is observed to be 

that of two-periodic layers (resulting in a total of 5 layers). Clearly an n-layer model in 

conjunction with multi-angle scattering equipment might have been adequate to identify 

this novel feature and relate to other characteristics of such a spore. That is to say, if this 

feature were unique, as is the case with Wahlberg’s finds, then this would be used as an 

identification protocol for the specific strain9.

The CDM and DDA [65] have been extensively used in astronomy and related dis­

ciplines. In effect a lattice of dipoles (or targets as preferred in the DDA terminology) 

generates a model of the particle under consideration. Assigning optical properties for 

each dipole, the lattice is then calculated by iteration and all fields are calculated. As 

should be obvious, the parameter space increases with the number of ‘targets’ needed to

6This refers to their experimental efforts and the use of the Clausius-Mossoti equation
7as is the case with Staphyloccus aureus and MRSA, which is the Multiple or Methicillin Resistant 

Staphylococcus aureus and presents a uniquely denser cell wall
8 as is the case with Bacillus Sphaericus
9It should be evident that prior knowledge plays a significant role in any chosen model
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approximate a particle’s geometry more closely. For example Bronk et.al. in [66] used a 

DDA model geometrically defined as a cylinder and capped with hemispheres of the same 

radius as that of the cylinder, for measuring the diameters of rod-shaped bacteria, using 

the paradigm of E.coli in the log-phase of growth10. This was subsequently utilised in 

[67] as a means to monitor the rod-like bacterial cells’ sensitivity in metal toxicity, that is 

to say non-rapid decrements of radius translated as a negative effect. However, in the the­

oretical work of Druger and Bronk [68] the number of dipoles rid required for a two-layer 

sphere with size parameter x =  1.5, was rid >  46000 and this leads to a space of ap­

proximately 92000 estimation parameters. Agreement with the BH-code in [4] was good 

for forward-scattering (0 ,7r/6) and side-scattering (7r/6, 77t/12) but increased difference 

from Mie theory was reported for back scattering. It is emphasized that back-scattering 

relates more closely to the internal structure than to sizes.

Returning to the experimental work of Bronk et.al [66], 10000 dipoles were used 

CE.coli model), resulting in an error of ±0.1 fim  in diameter, and the authors report that 

for a better resolution the number of dipoles has to be increased. The significance of 

the error in inference of diameter relates to the log-phase of growth from which phase 

E.coli cells have been sampled. Within this stage of growth, the cells may exhibit very 

small variation in size (< 0.1/zm). As a result using the said number of dipoles would 

fail to successfully infer the size distribution within a narrow size range. However, it 

is noted that increasing the number of dipoles by a factor of 10 will also ‘increase the 

time o f the calculations by a significant factor’11. Similar experimental work, [69, for 

example] required even more dipoles for the characterisation of more complex bacteria, 

modelled as ellipsoids and assuming a log-phase for growth, where the dimension of the 

scatterer is almost constant, but increasing the computational power required. It may be 

true that in the coming years the CDM and DDA will become very popular [70] but the 

computational complexity and hence time required before results are obtained, prohibits 

real-time characterisation. The latter is the reason why most light scattering instrumen­

tation manufacturers [19, 29] for whom the real-time characterisation problem is of great 

commercial importance. These manufacturers are insisting on the use of Mie hybrids or 

RDG theoretical models in conjunction with the Zimm plot or fitting method [71,72,73].

The Zimm [71] or Debye [72] fitting methods rely upon the construction of a plot of

10bacteria in the log-phase present growth such that the change in diameter is not rapid and the ‘shoot-out’ 
phenomenon is not observed

11 We can only postulate that this may mean an exponential increase in algorithmic complexity
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the ratio of the experimentally acquired angular intensity pattern over the sample concen­

tration against sin(0/2), where 6 is the scattering angle mentioned earlier in this Chap­

ter. Subsequently, a polynomial in sin(0/2) is fitted to the data, thereby obtaining the 

molecular weight and molar mass in conjunction with the average radius of gyration12 

from interpolation at 6 =  0°. The latter quantities are inferred by the use of optical 

properties (average refractive index in the sample concentration) which are linked by an 

experimentally set curve known as the refraction increment, with known concentration. 

A Zimm/Debye conformation plot [73], that is a plot of the average radius of gyration 

against the molar mass acquired by the Zimm/Debye method, serves as an indication of 

shape. That is linear for spherical particles and non-linear otherwise.

In terms of hybrid methods, an example would be to use the basis of RDG and AD 

approximations so that an analogy can be found between the formulas for scattering func­

tions, hence the characteristics of spheres and, for example, oriented spheroids [74, 75]. 

Another basis for building an analogy would be from the Geometrical Optics approxi­

mation, as is the case of Harada et.al. in [76], where a simple method, in which only 

two dominant rays describe the interference within the particle, is provided for deter­

mining the size and refractive index of a spheroidal ‘transparent’ particle larger than the 

wavelength, based on the use of Fresnel coefficients. From any theoretical analogy, one 

postulates a certain relationship between, on one side, the radius and refractive index of 

an ‘equivalent’ sphere in volume and on the other the spheroid parameters including ori­

entation. The parameter space for the equivalent spherical model is then used under the 

Mie scattering theory from where all properties are now calculated. Such approximations 

have little or no physical justification, as the geometry of the particle and the function 

of refractive index cannot be taken into account. Furthermore, depending on the hybrid 

method, the algorithmic complexity increases. To illustrate this we borrow an example 

from astronomy, where a three layer spherical model is used in which the core is assumed 

to have several inclusions which are in turn modelled using the DDA [77]. This model 

was found to be useful for calculating the optical properties of interstellar grains and was 

linked with the porosity of the material, that is inclusions within the core. The model 

reduces complexity and increases the time efficiency of the algorithm; however it is still 

out of the bounds of what would be considered in the bacteria domain to be a real time 

method. A similar procedure for biological particles, via simulation, is described in [33] 

where a Finite Difference Time Domain (FDTD) method has been used. However, due to

12The term ‘radius of gyration’ is a misnomer for the root mean square radius, which is a measure of  
particle size weighted by the mass distribution about its centre of mass.
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the use of FDTD, the memory requirements are reported to be particularly high. That is to 

say, a three-dimensional 2-layer cell, of radius 4/zm, with inclusions in the outer layer, re-

out of the bounds for a portable, real-time system, even under today’s rapid technological 

advancements in computing power. For a three-dimensional simplified model (homoge­

neous sphere with inclusions) the authors report that the time required to obtain a solution 

was 90 minutes. It should be noted however that the application of the FDTD to biolog­

ical cells has not been extensive, due, we suspect, to time complexity and computational 

power required.

The main ideas of all approximate methods are related to certain regions of the values 

of the basic diffraction parameters; namely, the size parameter x  and the relative refractive 

index m. For Rayleigh Scattering the conditions are x  1 and x\m \ «C 1 whilst for RDG 

these conditions improve to 2x\m  — 1| <C 1 whilst \m  — 1| <C 1. The first condition can 

be interpreted as specifying that the phase shift within the particle is assumed to be very 

small. That is to say, the incident radiation field’s behaviour and form outside the particle, 

neglecting the effects of the sample’s interface, remains almost unchanged within the 

particle. The second condition describes particles that have a refractive index very close 

to that of the medium they are suspended in. This limits the applicability to particles 

that have a small size to wavelength ratio and are optically soft (we will later refer to 

this as near-index but in a broader sense). Since bacteria have at least 70% of their body 

consisting of water [30], if they are suspended in a water based medium then the optically 

soft assumption is satisfied. However their sizes are larger than say visible wavelength and 

so with respect to the visible spectrum, any theoretical model is bound to be erroneous. 

However, Wyatt was the first to examine RDG theory derived models and apply this to 

experimental multi-angle scattering data in the visible spectrum [61, 16, 3]. The derived 

models ranged from 2-layer spherical models, to homogeneous ellipsoids and rods, as 

well as ellipsoids and rods with a spherical inclusion. With respect to the 2-layer model it 

follows that such a spherical particle can be predicted to scatter light with amplitude S (9) 

described mathematically as

quires at least 60MBytes of memory per cell. Clearly the computational power required is

(2k0(r1 — A r) sin(0/2))2

J3/2(2fcoasin(0/2))-|-

J3/2(2£:0(ri -  A r)sin (0 /2 ))

(2.6)
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Figure 2.9: Diagrammatic depiction of the cross section of a 2-layered spherical model. 
The outer layer is placed at distance r2 from the centre and has a thickness A r  = r2 — r\ 
within which a relative index of refraction m 2 is assumed; the inner core has a radius r\ 
and relative refractive index m i.

where A r = r2 — r\ models the thickness of the cell wall of the cell with overall radius 

r2 and internal core (cytoplasm) radius ri. The corresponding relative refractive indices 

are denoted by m i and m 2, 9 is the scattering angle and j 2 — —1. The function J 3/2 is 

the Bessel function of order 3/2. An illustration of such a 2-layer model can be seen in 

Figure 2.9 and our implementation of the mathematical model in Matlab of Equation 2.6 

can be seen in Annex B.

Using the studies referred to above and the RDG derived models, Sethi and Patnaik 

[78] performed viability studies for RDG in conjunction with multi-angle light scattering. 

They confirmed that the RDG can analyse in real time light scattering patterns even from 

‘washed-out’ peaks and valleys associated with high concentrations, that is to say, seem­

ingly featureless curves of angular dependence, where it appeared that at least 104 — 105 

cells per ml of solution was evident in the total volume. Even though they relied for the 

analysis on homogeneous models, he reports a good agreement with microscopy on the 

sizes of bacteria, even when the RDG should in theory fail due to exceeding the applica­

bility boundaries. However they omit results for the refractive index and only provide 

some estimated results in air. It may be the case that sizes can be successfully estimated 

but, since values for m  are only estimated in air, this leaves the applicability of a homo­

geneous model open to debate. For example, if the refractive index distribution within the 

cell is highly irregular then an average refractive index would not be a good measure. The
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same applies for highly skewed and exponential m-distributions. Finally, as is warned 

in [3, 79, 80], bacterial cells that are stored in water based environments will become 

rapidly dehydrated if introduced to a sealed or open air environment. This makes most 

measurements invalid for one who wishes to examine the cell in its growth cycle phase. 

An interesting find in the studies of Leuschner [81, 80] is the experimental realisation of 

the impossibility of identification of a cell in the bacteria domain based on the hypothesis 

of either a volumetric or size measurement for homogeneous models. This is due to the 

fact that in certain phases the change is negligible and because of the initial postulate that 

the predefined spherical shape of say a spore may be violated. An ovoid may have been a 

better model for bacterial spores. As a result one would monitor water content [82] or the 

protoplast/sporoplast volume ratio [83] within the spore by examining the mathematical 

relationships of certain optical properties [25, 84, 85] but it is doubtful whether this leads 

to identification or viability counting.

Findings of the above scattering theories and for patterns of angular dependence are 

summarised in Table 2.2. It should be noted that the values reported here are only the 

findings of the corresponding authors and only those that are directly related to the do­

main of bacteria. These values have been derived experimentally. There are many other 

references in the literature, as noted in this section, but either they are not derived directly 

from light scattering or have been found to agree with previous findings and as such are 

not included.

2.5 Mie scattering and the Rayleigh-Debye approximation

As we have mentioned earlier the simplest representation of a scattering particle is a ho­

mogeneous sphere. Scattering by such a particle is often referred to as Mie theory due to 

Gustav Mie’s treatise of the scattering of light by particles of gold and the exact solution

Wavelength in nm
2n/r: not reported
3[78]: The DAWN-EOS light scattering equipment of WyattTech was used. Refractive index value 

estimated in air.
4[25]: Laser interferometry, 2-layer Mie model.
5[80]: A goniometric module was used for collecting scattering patterns.
6[70]: Parametric fit to experimental data.
7[16]: Sealed chamber, single particle measurement; Refractive index was an ‘air equivalent estimation’.
8 [86]: Effect of heat on optical properties. The parameters indicate reduction in size, increase of refrac­

tive index with increasing temperature.
9 [26]: A two layer concentric sphere model from Mie theory used to generate 10,000 theoretical pat­

terns. Experimental data acquired from differential interferometry, and used to acquire the 4 parameters by 
non-linear least squares.

10[41]: the values reported are the average over 141 samples; size ranges obey the normal frequency 
distribution
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Microorganism Wavelength 1 Medium Refractive Index
m

Size (^m)/Shape

Streptococcus
bovis

655 Water n/r 2 0.8 -  0.99 (Ovoid)3

Bacillus subtilis 655 water 1.44 0.67 x 1.17 (Rod)3

Escherichia coli 655 water 1.35 0.99 x 1.1 (Rod)3

Bacillus sphaer- 
icus spores

514 water RIcore =  1.49 ± 
.02 RJU =  1.44 ±  
.01

Pcore =  0.35 ±  .04 
r c e u  =  0.50 ±  .05 
(Sphere)4

Bacillus sphaer- 
icus

690 water n/r 0.9 ±  0.06 (Sphere)5

Staphylococcus
aureus

633 water 1.66 ±0.15 I’core 0 .954  
r c e l l  = 1.04  
(Sphere)6

Bacillus sphaer- 
icus spores

515 Water/Air RIcore — 1.54 ±  
.01 Rlctu =  1.47 ±  
.01

T c o r e  = 0.43 ±  .012 
T c e i i  =  0.48 ±  .007 
(Rod)7

Clostridium fila- 
mentojum

515 Water/Air RIcore =  1.54 ±  
.01 R U  =  1.47 ±  
.02

Tcore =  0.44 ±  .011 
* c e l l  =  0.49 ±  .008 
(Sphere)7

Staphylococcus
epidermidis

633 Water 1.54(±0.45) -> 
(±0.22)

0.864 -> 0.806 
(Sphere)8

Lycoperdon 
pyriforme spores

514 Water RIcore ~  1-43 ±  
.04 RIcu, =  1.49 ±  
.04

Tcore =  1.37 ±  
.16 r c e l i  = 1.71 ±  
.ll(Sphere)9

Staphylococcus
epidermidis

514 Water 1.388 0.36 (homogeneous 
sphere)10

Table 2.2: Literature Summary for values of optical properties derived from light scatter­
ing
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offered therein [9]. Mie theory is a separation o f variables approach to the solution of 

the scattering problem from Maxwell equations [87, pp365-367]. That is to say, from 

Maxwell equations and by performing appropriate eliminations and applying some sim­

plifying assumptions, Mie describes the problem as a second order (partial) differential 

equation of the scattered field E s relating to the size parameter x, producing

d2(x2E s) 1 d f  . . d , . . 5 E Sx\ 1 d2E s / 2_
+ sm  w (sm de ̂ sin Hif) + 5??'w  + x Ea = 0 (2-7)

In Equation 2.7 the scattering field (E5) is described as a series of electric (H ) and 

magnetic (M ) oscillations (E5 ~  (H 5,M S)). The simplifying assumptions mentioned 

earlier are the boundary conditions which must hold at the surface of the sphere. That is 

to say, the magnetic field and permittivity being unchanged inside and outside the particle.

As a result the separation o f variables can be identified by grouping candidate solu­

tions of Equation 2.7 to

•  Electrical oscillations only; |M S| =  0.

• Magnetic oscillations only; |H S| =  0.

• Regular periodic oscillations; that is, addition of the integrals resulting from the 

above two cases.

By relating the above solutions he then formulates the scattering series and the scatter­

ing elements accordingly. These scattering coefficients for the Mie (scattering) series are 

described in Section 3.2, page 43, for the solution provided by Volkov and Kovach [57] 

of which M ie’s solution is nowadays the subcase of a homogeneous sphere. That is to 

say, for n  layers, the scattering coefficients are found by putting n  =  1. In Section 3.2 all 

elements are described for the case of n-layered concentric sphere and so further details 

will not be given in this section. However, we should report two main results that are pro­

vided within the work of Mie in [9], and constitute the physical basis of Mie scattering. 

For the particulars, the reader is referred to the English translation from M ie’s original 

manuscript by Sandia Laboratories [88]13.

Mie Axiom: The radiation reflected from a small (homogeneous) sphere essentially com­

prises a finite number of partial waves, but the number of partial waves and their 

intensity increases as the sphere becomes larger.

13In particular the theorems in pages 52 and 53.
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M ie’s Theorem: Given a constant concentration and a very fine distribution the scattered 

radiation increases as particle diameter increases. However, when particles become 

quite large, it reaches a maximum (at the forward direction) and then decreases 

rapidly; with weaker and weaker maxima (in the angular pattern) which may still 

appear.

To summarise we would say that the Mie scattering theory is applicable for spheri­

cal particles and is a direct solution from Maxwell equations by separation of variables. 

It calculates the field inside and outside the particle and as a result there is no need for 

making an assumption concerning the total internal field. However solving in the same 

manner for non-spherical particles or inhomogeneous particles is difficult, if not impos­

sible. Alternatively, one would assume the functional behaviour of the internal field and 

solve by approximation.

The latter method is the essence of the Born or Rayleigh-Debye approxim ation. 

That is to say, one would rewrite the scattering equation as an integral over the particle’s 

volume [89, for example] by invoking the far-field form of the Green’s function (G0). As 

such, to calculate from

where the unit vectors k s, designate the direction of scattering and incidence respec­

tively. The functional G0 is Green’s function defined as G0(ks, k*-) =  exp(jfc0|k s — 

kf|)/47r|ks — k*| and m (r) is the refractive index distribution. The total internal field of 

the particle E (r)  is unknown.

Bom  from a quantum mechanics perspective, and Debye whilst working on extending 

the Rayleigh scattering of light theory, assumed that within the particle there are relatively 

weak interactions between the invoked potentials and so only single scattering events from 

infinitesimal volume scatterers are to be taken into account. In effect, the field inside the 

particle is taken to be approximately equal to that of incidence. That is to say,

which can now be substituted to Equation 2.8 to get an approximate solution for the 

scattering field at ‘infinite’ distance from the scatterers (far-field). This is the case, for 

example, with Wyatt’s two layer spherical model of page 27, resulting in the approximate 

solution of the scattering amplitude function of Equation 2.6.

Vo

E {r) 2  E t{r)
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In a sense, the Rayleigh-Debye approximation translates to the incident field being 

‘distorted’ with a very small phase shift within the particle (2x\m  — 1| 1) and subse­

quently producing the scattered field. The latter can only apply to particles that have a 

refractive index very close to that of the medium they are suspended in, hence the condi­

tion |m  — 1| 1 (near-index).

2.6 On equipment based on light scattering

As we have seen in Section 2.4, in theory, the detailed light intensity pattern of angular 

dependence, scattered by an individual particle, is a complex function of size, shape, ori­

entation and internal structure. In the Rayleigh region, the amount scattered at a specific 

angle is primarily a function of volume of the particle, but is insensitive to the particle 

shape. This sets an upper limit on the sizes of particles whose shape can be investigated 

using visible radiation, and in practical terms it cannot exceed a few tenths of a microm­

eter. However at sizes larger than 0.7 of a fim, the Rayleigh-Debye theory would be 

applied. For particle sizes greater than about 40//m, the spatial scattering profile becomes 

increasingly complex, until for particles much larger than the wavelength of the illuminat­

ing incident source concepts from geometrical optics can be used to describe the spatial 

scattering and infer particle properties. The delivery of particles singly [18] into the il­

lumination measurement space has an upper limit in size in the order of 100/im and is 

described in terms of polar scattering, that is to say 0 — 180° in the plane of the axis of 

the incident illumination and the azimuthal scattering (i.e. at 360° revolution around the 

illumination axis).

Measuring light scattering in a single azimuthal plane, that is to say intensity measure­

ments in a single plane containing the illumination source, is the most common approach. 

The polar intensity variation from an unknown particle led Wyatt to postulate that bacteria 

can be identified by the manner in which they scatter light [86]. This work led to the first 

commercial instrument [61] and a succession of other researchers who refined and opti­

mised this technology with the latest advances: by Malvern Instruments [29] which uses 

a goniometric module for ‘scanning’ from 12° — 152° at a travel speed of 20° per second; 

and [18] which uses an array of optical fibres to record scattering throughout the polar 

arc of approximately 180° about scattering particles in a cuvette, liquid flow, or electro­

rotation assembly. However these instrumental geometries have the limitation that they 

do not record the effect that orientation has on the light scattering pattern and as a result
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cannot necessarily infer the characteristics of a non-spherical particle. Hence in their ini­

tial works both Wyatt and Ulanowski [3] [13] work with cells of approximately spherical 

shape as is the case with spore inclusions. As result, Wyatt later on incorporates a 360° 

polar scanning module of photodetectors placed symmetrically opposite one another [19] 

so as to capture the effect of orientation. This allowed for the characterisation of spheres, 

rods and generally labelled non-spherical particles.

In the DAWN-A light, scattering instrument of Wyatt Technologies, an alternative to 

the instrument presented in [19], a spherical metal chamber was pierced by 72 small and 

2 large detector apertures. The small apertures were arranged in 4 azimuthal planes of 

18 apertures each set at intervals of 45°. Each small aperture was linked to an optical 

fibre which transmitted light to a photodetector unit. The two large apertures were used 

for intensity measurements on the horizontal plane with reference to the incident light 

source. This instrumentation setup was the culmination of trying to combine polar and 

azimuthal scattering studies. Further research on this geometric instrumentation setup has 

been made by the National Institute of Standards and Technology (USA) in [90] and [91], 

and it is currently under refinement.

In this instrument (Multi-detector Hemispherical Polarised Optical Scattering Instru­

ment, MHPOSI) three lasers at different wavelengths allow for multi-wavelength inves­

tigations. The laser passes through a power stabiliser, a polariser, a retarder at half the 

wavelength of the selected illumination source, a lens and a pinhole before being directed 

to and focused with a concave mirror through the centre of the light detector/receiver. The 

hemispherical detector holder consists of a hemisphere of inner radius 75mm with 3mm 

removed from its opening end. On its surface 31 apertures are placed of which one is left 

open for the insertion of the light incident beam whilst the opposite aperture allows the 

forward beam to exit the system and is subsequently blocked by a beam trap. In order to 

facilitate fundamental studies of the spatial light scattering behaviour of individual spher­

ical and non-spherical particles, a high resolution CCD intensifier camera, in combination 

with a retractable low power microscope with x 6 objective, also uses one of the said aper­

tures. The 28 scattering detection points cover 45% of the scattering hemisphere. With 

this instrument two applications have been covered; namely, microroughness of silicon, 

and particulate contaminants from 181nm to about 20/mi modelled by polystyrene latex 

spheres. It must be noted that the half-way retarders are used for measuring the Mueller 

matrix elements, a subset of it to be exact, in order to improve the sensitivity of detection 

and for switching the polarisation state of the observed scattering intensities. Finally, the 

output is normalised by the signal acquired from the incident source so as to compensate
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for intensity variations.

The most recent development in terms of hemispherical scattering acquisition arrange­

ments has been reported by Micro Imaging Technology Incorporated (California, US). In 

their implementation [92], an array of optical sensors at polar and azimuthal angular po­

sitions is utilised to detect scattering from a glass sample vial which incorporates a heater 

at its bottom so as to circulate matter within the cuvette. For each bacterial species, the 

intensity curve is mapped to a probability density function, where the frequency of occur­

rence of a number of intensity curves can be found. Subsequently the derived signal is 

compared with the histograms of known curves to identify qualitatively the microscopic 

particles present. The occurrences, as defined in the invention, are event descriptors, that 

is, a library of scattering patterns that have been already tested and found to be true, 

eliminating the need for frequent calibration. The discrimination procedure is the known 

statistical techniques of Discriminant Functions [93], but they are not mentioned explic­

itly.

Consequently, it must be clear that there has been quite extensive research on the 

instrumentation of angular light scattering and all manufacturers agree that in all cases 

the light scattering pattern of polar and azimuthal planes can be measured and the angular 

resolution will depend upon the number of detector points used. Furthermore, single 

particle scattering measurements are possible. It may be preferable to use supporting 

devices such as electro-rotation or electrophoresis, but it is not essential, depending on 

how long the particle stays in the field of view of the incident radiation. Advances in 

terms of light scattering measurements lie predominantly in the refinement of theories to 

interpret such data as described in Section 2.4, and in reducing the background noise from 

artefacts within the sample. In the bacteria characterisation case in water environments, 

this may range from dead cells to particulate matter of water that has undergone treatment, 

for example ‘clouds’ of particles of chlorine.

2.7 Discussion

It should be evident that bacteria are of great diversity in terms of size, the processes by 

which they exhibit growth through division and environmental effects due to changes in 

light, oxygen, temperature, pH and others. Furthermore there is a need for experimental 

studies that consider the inhomogeneous nature of the cell in terms of the inference of the 

internal optical properties of the cell. From the studies that we have cited we draw the 

following conclusions, which are treated as reasonable assumptions and aims within our
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work.

1. Bacteria in water based mediums have a refractive index close to that of water. As a 

result they can be modelled as near-index cells where absorption can be considered 

to be negligible.

2. The sizes for bacteria are indeed diverse but for drinking water, they can be consid­

ered to be from approximately 1/un to 4/zm.

3. The size distributions for modelling populations must also be examined and in a 

way that incorporate skewness measures.

4. The commonly used cytoplasm-wall model for bacterial cells is limiting and has to 

be extended to incorporate at least most of the dominant features of the cell.

5. Spherical models or spherical equivalents do not incorporate physical justification 

of inferred properties and do not explore the effect of non-sphericity on the scatter­

ing patterns.

6. There exist cases where ambiguous results indicate the need for extension of any 

mathematical solution to other characteristic external morphologies, as in the case 

of ellipsoidal particles.

7. Forward scattering has been investigated and seems to offer no contribution to­

wards identification. The same is true for exploring concentrations or volumetric 

inference. That is to say, by simply inferring sizes of bacteria, since too many of 

them present the same volume, it may be impossible to infer a characterisation or 

partial identification protocol.

8. Incorporation of the average polarisability of the cell within a proposed model 

would lead to a better understanding of the internal structure contributions to light 

scattering.
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Chapter 3 

On inhomogeneous particles of 
spherical symmetry

In this chapter we indirectly use the Bohren-Huffman solution to the coated (2-layer) 

sphere problem [4, pp 181-183; 483-489] which leads to the Volkov-Kovach solution of 

the n-layer sphere problem [57], in order to validate our solution (Section 3.3) for the 

near-index particle problem, as is the case with bacteria in water based environments. We 

strongly emphasize the fact that we are mostly interested in potable water, as in drink­

ing water distribution systems [94]. For the reasons outlined in Chapter 2 we provide 

solutions to the problem definition:

Definition 3.1. From a particle/cell, of assumed size and spherical shape, which is illu­

minated by a (laser) beam, of specified intensity (70), wavelength (A) and polarisation, 

determine the secondary radiation (scattered light intensity) in all directions, assuming 

that the internal composition resembles a multi-layered concentric structure.

Our main result (Section 3.3) generalizes a modification to the Rayleigh-Debye ap­

proximation (mRDG)1, also known as the Bom approximation in the quantum mechanics 

field, developed in [95] and used by Sloot in [96] in the problem domain of blood cells 

(2-layer model). The approximation model developed in this chapter has a direct applica­

tion to the problem of Definition 3.1 for virtually all spherical bacterial cells in water and 

is, to the best of our knowledge, the first generalisation to n  concentric layers. Finally, the 

Mie scattering program code (Annex A) developed in Matlab, as part of our validation 

procedure, outlined in Section 3.2, is the first to appear2.

!The G in mRDG relates to the Gans approximation which is used within the R-D approximation. This 
is done for historical reasons and in order to keep in line with most of the bibliographic materials used 
within

2Most of what is said in the subsequent sections has been published in the European Society for Mod­
elling and Simulation Proceedings of June 2003
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3.1 Introduction

We start by briefly introducing a simplified terminology used in the absorption and scat­

tering by small particles, in the form of definitions that are consistent with the previous 

chapters, where the corresponding terms are used in a more general (laser) optics set­

ting. We provide explanations for the use of such definitions that are based on specific 

assumptions, which will be used throughout this thesis.

A plane wave is usually found to be a good approximation to most light waves [97] 

and is one where the direction of the magnetic and electric fields are confined to the 

propagation direction. Since the plane is two-dimensional the electric vector at a point in 

space can be decomposed into two orthogonal components. These two components may 

differ in amplitude and phase. By considering the locus of points, that is to say the shape 

of the curve traced out in a fixed plane by the electric vector, we obtain a description of 

the polarisation state.

Definition 3.2. Polarisation is a property of electromagnetic radiation, such as light, by 

which a harmonic plane wave exhibits a specific curve (the locus of points of the electric 

field) with respect to the end point of the electric vector.

If the two orthogonal components are in phase then the polarisation is said to be linear. 

If the orthogonal components have the same amplitude but with a phase difference 7r/2, 

then we have circular polarisation because the sum of these components will rotate in a 

circle. Depending on the way the electric vector rotates we have right-hand or left-hand 

circular polarisation. If the two components either do not have the same amplitude or do 

not exhibit a phase difference 7r /2  (or both), then the electric vector will generate a locus 

of points described by an ellipse. This is known as the polarisation ellipse.

Light can be polarised by reflection, refraction or by oblique transmission via circular 

or elliptical glass surfaces. In that sense, coherent, polarised light, as in the case of lasers 

in the visible spectrum, which illuminate a suspension of particles, may become partially 

polarised. This can be interpreted as a statistical correlation between the components of 

the electric field. The collection of particles is always assumed to follow a particular 

size distribution describing the largest linear dimension, and it is often assumed that a 

particular polarisation state has taken place with reference to the scattering plane.

Definition 3.3. A measure of linear spatial extent, that is the magnitude of width, height 

or length in a straight line, in a dimensional space is called the linear dimension.
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A small particle is an invisible unit of matter to the naked eye, but not in the traditional 

particle physics sense, where a small particle is also a ‘fundamental’ particle. Experimen­

tal considerations have also to be taken into account, so that low light levels produced by- 

scattering can be observed for a source in the visible spectrum and with detectors placed 

at angular positions. Small particles are defined so as to have a size of largest linear di­

mension, in terms of length, height or width depending on the spatial viewpoint. In that 

sense the far ends of a size distribution may include particles with size ranging from that 

of individual molecules to prokaryotic cells and protozoa. In as much,

Definition 3.4. Let d be the largest linear dimension of the particle and m  its relative 

refractive index with respect to the surrounding medium, and let A denote the incident 

light wavelength. If a particle’s linear dimension obeys the rule, d < r ^ r r ,  then the\m i |

particle is said to be a small particle.

This does not mean that there is a need to attempt to cover the whole of this range, 

as this lies within the applicability boundaries of a theory or approximation model. As 

mentioned earlier, bacteria have a maximum linear dimension of only a few microns {(im); 

whilst the largest of its aggregates, say a chain like or a self-similar structure, is usually 

not much larger than about 40—60/zm, but this is a rarity in potable water supply networks 

[30,11].

Definition 3.5. Index of refraction or the refractive index for radiation of some fre­

quency, is defined as the ratio of the speed of the electromagnetic wave (as in the case of 

light), in free space to its speed in a medium.

It can be easily shown that Definition 3.5 is equivalent to an alternative definition 

given in terms of angles of incidence and refraction of the wave [87, pp377-378] at 

a plane boundary; that is to say, either expressed as the ratio (number) of the sine of 

angle of incidence to the sine of the angle of refraction, or by the expression y/ejl at­

tributed to M axw ell3. For example, Kou in [98], calculated that the index of refraction 

for pure/distilled water solution, at 20°C and for A =  589nm, is 1.33. This effectively 

means that when light passes out of air into water, the sine of the angle of incidence is 

1.33 times the sine of the angle of refraction. For particle(s) suspended in water that may 

have the greatest part of their bodies composed of water, then the refractive index closely 

matches that of 1.33. This results in a relative refractive index close to unity (m —> 1).

3e is the electric permittivity,/r is the magnetic permeability
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A complex index of refraction can be defined for particles that absorb as well as scatter 

light and it is related to the wavelength of incidence. The imaginary part of the complex 

(relative) refractive index number accounts for the amount of absorption, that is to say 

a decrease in the intensity of light. The real part of the complex (relative) refractive in­

dex has been shown to relate to the amount of water present within a particle or cell [25, 

Chapter 2].

Definition 3.6. If ra is the relative refractive index, taken to be in the case of an inho- 

mogeneous particle the average over its volume, of a small particle relative to that of its 

surrounding medium, then a near-index particle will satisfy the condition | m  — i i < i .

Depending on the theory used, this condition is to be taken in a rather heuristic sense. 

As such, a near-index particle is a particle that ‘closely’ matches 4 the refractive index of 

the medium it is suspended in. Hence, even if the condition of Definition 3.6 is relaxed to 

\m  — 1| <  1, then the particle is still considered to be a near-index particle. As a result, it 

is often assumed that, for the near-index regime, the Lorentz-Lorenz formula5

m 2 - 1  _  fi2 -  l Vt
ra2 +  2 (i2 + 2 VQ K }

where /i is the magnetic permeability, can be simplified since m + 1 —> 2 and ra2 + 1  —> 2. 

It follows that m 2 +  2 —> 3 and bearing in mind that 1, Equation 3.1 simplifies to

r a 2 - l  r a  +  1  ,  ^  m #  l  2
—o— ^ =  —o— -(m  — 1 ) ----- ► - f r a  — 1) (3.2)
ra2 +  2 ra2 +  2 '  3 V 1

2 / IV ,
3 ( m - 1 )R 3 J ^ K  (3'3)

where V0 is the volume occupied by the particles in a total volume Vt. A number ratio 

or density is often used instead, which is the number of particles per unit volume. For 

example, the absorption or decrease in intensity by a slab would be approximated by 

27rAAr33ft{,S'(0)} (refer to Equations 3.4, 3.5 and Definition 3.8). Here 3ft is the real part 

of S(0). An additional assumption for Equation 3.2 is that of the far-field.

Definition 3.7. Assume a number of observation points placed on the circumference of 

a circle of radius R, where the sample, which includes the particle under observation, is

4needless to say the term is used loosely
5Maxwell has also derived the same formula but the two scientists, Lorentz and Lorenz, derived it 

independently and at about the same time, but their result was published first.
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placed at the centre. If the largest linear dimension d of the particle under observation is

much smaller than that of the distance vector R , with magnitude R, hence d R, then 

the total number of angular observations portrays measurement of the long-distance field 

of the scattered light and will be called the far-field measurement.

Experimentally speaking we always refer to remote sensing in the sense that the de­

tector is always at a distance larger than that of the largest linear dimension, which in 

our case is also true in the sense of a far-field. Additionally, the assumption of a far-field 

quite often simplifies mathematical manipulation on the estimation of Scattering Fields 

and Light Intensity (in arbitrary units). The latter is due to the fact that if the magnitude 

of the observation vector R  is R  < d 2/X , then the scattered field from a particle E 5(r) 

has complicated amplitude and phase variations because of interference between differ­

ent parts of the particle. At the far-field observation point (we will illustrate this later for 

plane P  in Figure 3.5) the scattering field behaves as a spherical wave, so that

where S denotes the scattering matrix, which takes the place of the transformation ma­

trix in the Stokes matrix formulation [99, pl23] [100, p34] [101, pp33-36]. The scattered 

field E s is observed at the direction of the unit vector k s and is expressed in terms of the 

incident field E ;(r) which in turn follows the direction of a unit vector k*. The scattering 

matrix S explains the phase and magnitude of the scattering fields by means of four am­

plitude functions Si, S2? S3 , S4, all functions of (0 ,4>). Depending on the orientation of a 

particle and assuming that the initial position is such that the amplitude functions give the 

form of scattering matrix

being rotated by 180° is such that,

The reader is referred to [100, pp.47-49] for the details on selection of the matrix 

form. It is noted that the reciprocal position, that is the rotation of the particle by 180°, 

results in change of the sign and transpose for S3 and S4, but the scattering matrix form

E s(r) =  S (k i5k s) — E*(r)
e4kR

(3.4)

(3.5)

then the relationship with the scattering matrix of Equation 3.5 and for the same particle
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remains unchanged since the conjugate is symmetric. The proof follows by the reciprocity 

theorem [102, p l7 , pl71 and lemmas therein] for vector waves. By definition [4, p i 12]:

Definition 3.8. Spherical particles and in general any cylindrically symmetrical particle 

with respect to the direction of propagation of the incident light, result in S i , S 2 being 

dependent only on the scattering angle (say 6 ), and not on the ‘rotational’ (azimuthal) 

angle (say <j>), due to absence of particle orientation effects, whilst S 3 = = 0 and S

will be diagonal.

The proof follows from symmetry on the plane of the source incidence with reference 

to that of scattering.

3.2 The exact solution of the n-layer problem

In this section we outline a recursive solution to the problem of scattering by multi-layered 

spherical particles 6, provided by means of Mie scattering series. We are using conver­

gence criteria and the usual functions and notation, as do most of the well known solutions 

to lesser problems; the properties of the particles are provided in a form applicable to val­

idating the near-index particle solution. The Mie theory or exact solution to this problem 

is valid in a much larger range of the size parameter and refractive index. As a matter 

of fact it is often referred to as ‘rigorous scattering theory fo r spheres o f arbitrary size'. 

Since it is an exact solution it can be used for validation of any model which may be a 

special case (as in the near-index case) or any type of approximate solution.

In any definition of the problem the prerequisite for sphericity is essential if the solu­

tion is to be taken as being exact in the true sense. That is to say, it would be used as an 

approximation depending only on volume to an asymmetric, non-spherical particle, but 

that would only be used as an approximate spherical ‘equivalent’ to an otherwise different 

(in geometrical shape) particle [75].

Even though we are interested in the microscopic world (small particles), one would 

in theory solve the heterogeneous particle problem defined by Maxwell’s equations. As 

we have seen in Section 2.5, Gustav Mie [9] was the first to provide a solution to the 

scattering and absorption by homogeneous spheres in that sense. Since then several papers

6The code we have developed, which is provided in Annex A is the first set of Mie functions to appear, 
developed in MATLAB (v6, R12; ©Mathworks). When this manuscript was written, it had been featured 
in T. Wriedt’s e-Library EM Scattering codes, and has been used as a validation program against other 
codes/methods by Dr Hu Cang of Stanford University (USA) and professor M. Brio of University of Arizona 
in Tucson, USA.
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Figure 3.1: An n-layered concentric sphere: i =  1 , 2 , . . .  N

have appeared that refine the theory in terms of computational complexity, approximate 

for spheres with inclusions [101] and so on. However it should be emphasised that in 

spite of the advances of processing power, to use Mie theory variants in populations of 

cells or multiple models still involves a great amount of calculations. As a result, Mie 

theory for inhomogeneous particles still is computationally expensive and cannot be used 

for real-time analysis of bacteria.

The problem of Definition 3.1 is illustrated in Figure 3.1. In general, we have i =  

l , 2 , . . . , n , . . . , i V  spherical compartments placed concentrically around the core with ra­

dius r\ and relative refractive index m \. For simplicity we are using the size parameter 

notation Xi where Xi =  (27rrf/A), with A being the wavelength of the incident light source. 

It is assumed that the magnetisation of the particle is governed by the magnetisation of 

the ambient medium, and hence the magnetic permeability between the particle ( ^ )  and 

the medium (/x) is unchanged (i.e. fi = fii =  • • • =  fiN).

The explicit equations for the Mie coefficients an and bn of the scattering series of 

the n-layered inhomogeneous sphere [57], can be used in that respect. In general these 

equations have the form

a _  r N ( W n ,n  ~  ^ iv - i (k)n ,n ) ~  rajvW jy {^ n ,n  ~  ^ n - i kn ,n ) 
fisr (W n ,N ~  A N - i (K)n ,N) — m w(£)jv — ^V-l^iV.iv)
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where

m i+i«”+i,*WO:

(3.10)

(3.9)

and

mi+i(«)"iC+v

TOi+l(K)"j<+1,i

(3.11)

1 < i  < N - 1

In Equations 3.7-3.11, the notation used is such that ip(rriL, Xi) =  ^ n(xt-) =

'0'(mL, Xi) =  WOJ,*; '^n(x i) ~  V?; an(i  similarly for the functions k and £. The reader is

kind (implemented in Matlab function: RBI) and second kind (implemented in Matlab 

function: RB2) respectively in Annex A.2, whilst £(e) follows the Hankel function [103], 

internally set in the Matlab function: n l a y e r S c a C o e f  f ,  Annex A.3. It follows that, 

£(e:) =  ^>(e) -f j  k (s ), for n  € N. The reader should also bear in mind the recurrence 

relations used in the code of Annex A,

where z  denotes either of the said Bessel functions.

An important consideration to be made is the number of terms (an, bn) required to get 

a good approximation to the limit of the scattering series. The convergence criterion of 

[10] is used, even though it was derived and it is considered to be optimal only for the

7note that z'(e) = ^z(e)

reminded that the functions 7 ip(e) and k (e) follow the Ricatti-Bessel function of the first

2 „ _ i ( e )  + zn+1(e) = 2n + 1zn(e)
£

d
(2n  +  l ) — zn(e) = nzn-i(e)  -  (n +  l ) z n+1(£)

(3.12)

(3.13)
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homogeneous sphere problem. There is no evidence in the literature that this criterion is 

flawed for n  layers and so it is adopted here. In effect, the maximum number of terms nc 

to be calculated, for x  = x ^ ,  follows the schema

' a; +  4a;1/3 +  1, a;E  [0.02,8]

n c = x  +  4.05a;1/3 +  2, x  E (8,4200]

 ̂ x  +  4a;1/3 +  2, x  E (4200,20000]

(3.14)

However, it should be emphasized that it has been indicated in many publications (e.g. 

[104]) that even if only the criterion (a;+4.05a;1/3-j-2) is used, the difference in the results, 

for ‘small particles’, is negligible.

Equations 3.7-3.8 in conjunction with Equation 3.14, can be used to determine the 

scattering (Csca), extinction (Cext) and backscattering (Cbac) cross sections and therefore 

the corresponding efficiencies. These efficiencies are dimensionless cross sections in their 

true meaning. For example, the extinction efficiency, denoted by Qext, may be interpreted 

as the proportion of the area Cext which is in the ‘shadow’ cast upon a detector by a par­

ticle. That is to say, we assume that a particle or a collection of particles illuminated by 

a light source generates light scattered within the cone of detection of a detector. The 

proportion of the area by which the incoming radiation will be reduced on the detector 

is Cext with an efficiency Qext. Following the same series form for that of a homoge­

neous particle but taking into account that the radius of the multi-layered sphere is 

(corresponding size parameter x ^ ) ,  we have

where 3ft denotes the real part of the resulting complex number (an +  bn). From Equa­

tions 3.15 we can now approximate the Absorption Efficiency QabS as Q a b s  ^  Q e x t — Q s c a -  

Note that the condition Cabs < Cext must always be satisfied.

For obtaining detailed information on the shape of the angular scattering pattern, there 

is a need to calculate the scattering functions 8, denoted here by Si and S 2 . These func­

tions describe the scattered field and can be used when we approximate the so-called far- 

field', that is to say, the scattering observation is made at a distance sufficiently larger than 

that of the particle’s largest linear dimension. These expressions follow the functional

Q s c a  -  - j r  Y Z = l ( 2n +  i X W 2 +  |&n|2) 

Q e x t  — -jjr E n L i(2n, +  1) 3ft{an +  bn}

Q b a c  =  - £ T  Y ^ n = l ( ^ n  +  1)(—l ) n(a n ~  K )
N

(3.15)

form,

8see Equation 3.5 and the discussion that follows straight after
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(3.16)

(3.17)

and have been implemented as a Matlab function (n l a y e r  Amp) in Annex A.3. Here 

the functions 7r and r  are the Associated Legendre Polynomials (calculated in Matlab 

function: A L e g e n d r ,  implemented in Annex A.2). That is to say, 7r and r  are the angle 

(0) dependent functions and can be computed by upward recurrence [4, p95] from the 

relations

beginning with 7r0 =  0 and 7Ti =  1. The maximum number of terms (nc) to be calculated 

in the series of Equations 3.16-3.17 follows the schema of Equation 3.14. Consequently, 

the relevant Stokes parameters can be computed by applying [4, p65]

meaning of the scattering amplitudes Si and S 2 relates to the incident light being po­

larised perpendicular and parallel to the scattering plane, respectively. Furthermore they 

describe the amplitude and the phase of the scattering waves. As a result, using the scat­

tering elements as defined in Equations 3.20 one would, in theory, calculate all relevant 

information about the particle and its optical behaviour; for example, the light intensity 

scattered by a multilayered spherical particle for any state of polarisation (Matlab func­

tion: n l a y e r l n t e n s i t y  implemented in Annex A.2).

Since the scattered intensity, denoted by Is(0), is directly related to the state of polar­

isation of the incident light intensity IQ to a particular scattering plane 9, we often need 

to obtain results for parallel and perpendicular polarisation as well as unpolarised inci­

dence. The latter is of particular interest in experimental work. In this case, it can be 

shown [100, p35] that

9in most cases this would imply the horizontal scattering plane and is also adopted here

7Tn — TTn—1 COS 0 TTn—2
72 — 1 72— 1

2n — 1 „ n
(3.18)

Tn =  727Tn COS 6  — (72 +  l)7Tn_ i (3.19)

(3.20)

where the symbol S  denotes the complex conjugate of S  and f  =  — 1 . The physical
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Figure 3.2: A 2-layer sphere intensity pattern, following the results for B.sphaericus 
spores at A =  0.514/im [3]. Left: Light Intensity Pattern; Right: Polar plot at 0 G 
(0,180°).

and it is assumed that the point of observation R  is such that r R, whilst X  =  kaR, 

where kQ =  27t/A with A the wavelength of the source in vacuum.

It is often noted, in most scientific papers, that the intensity (or irradiance, in the optics 

field) is reported in arbitrary units, without a specific explanation as to why this is the 

case. Furthermore, intensity can be said to be the energy flux per unit area, that is to say, 

it is measured in Watt per cm2 in the MKS units system. However there are exceptions 

such as when Is(0) is expressed directly in terms of electric and magnetic fields (see 

Definition 3.5). Additionally, it is assumed that the incident and scattered waves at the 

far field are confined to a small solid angle, usually taken to be that of the detector area, 

and to a small frequency interval. It is our understanding that it is due to this that the 

terminology arbitrary units is often preferable.

A typical scattering pattern can be seen in Figure 3.2. It should be noted that the 

pattern shown here closely resembles that of Wyatt [3], except for the deep minimum at 

6  & 150° which is not reported. This is often the case. That is to say only the values that 

correspond to the ‘best’ solution (goodness-of-fit) are reported. This is due to the fact that 

a unique solution cannot be found as the approximation problem is an ill-posed problem. 

In the spherical particle case, irrespectively of the number of layers, the pattern is an 

even function of © as illustrated in the polar plot in Figure 3.2[Right]. This property is 

extensively used by many manufacturers of Multi Angle Light Scattering instruments [19, 

for example]. For particles of spherical symmetry will produce a differential pattern that

^2 ('S'ii +  £ 12)^0, parallel polarisation

— S 12)I0, perpendicular polarisation (3.21)

^2 (£1i ) R , unpolarised
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Figure 3.3: Light Intensity Patterns of 2 to 5 layer particles at multi-angle and variable 
wavelength

will be linear or equivalent to a linear plot in either the Zimm/Debye conformation plot 

(Section 2.4, page 26) or polar plot sense, whilst asymmetry will deviate from linearity 

[3, 19, 74]. By differential pattern we mean the subtraction of the averaged signal for 

9 £  (0 ,7r) from that for 9 £  (7r, 27t). If only noise appears then the average will lead to a 

linear Zimm/Debye conformation plot, whilst it will be non-linear otherwise.

R em ark 3.1. Particles of spherical symmetry will always produce a linear differential 

light scattering pattern irrespectively of their internal inhomogeneities, whilst non-spherical 

particles, that is to say those that do not present any form of spherical symmetry, will 

present a non-linear differential light scattering pattern.

In Figure 3.3, we have generated several patterns of angular dependence for different 

values of incident source wavelength. This is a contour plot of different A values that 

produce several intensity patterns of angular dependence; namely, A £ [0.6, l]/im, that is 

from red to infra-red laser light source. Referring to Remark 3.1, spheres produce a linear 

differential pattern, but, for multiple wavelengths, and for different layered models of the



same size and spherical structure, the results are very different. The scattered intensity 

I s{9) is predicted to be stronger in the near-forward angles (0,0.5) radians (equivalent to 

approximately 0,30°), depicted by lighter shades of grey, independently of wavelength, 

but it has no significant variability, depicted by closely matched levels of grey-scale in 

Figure 3.3. However this is not true when examining the angular scattering pattern as a 

whole. The scattered intensity changes dramatically in response to the effect of additional 

internal layers, hence to the change of internal composition. As the number of layers in­

creases, the intensity overall decreases. This can be verified by the appearance of darker 

patches in the contour plots of Figure 3.3. Even so, these changes are clearly evident close 

to the visible spectrum, where those darker patches appear to occupy a lesser area of the 

contour plot, hence the intensity signal can be said to be, at least theoretically, stronger, 

which in turn justifies the fact that most manufacturers and experimenters are insisting on 

the use of sources in the visible spectrum. In terms of experimentation however, it would 

be expected that a variable wavelength laser source would be preferred, since different in­

ternal structures from similarly sized, spherical objects would be recognised much faster 

and in real-time. Assuming that these variable wavelength patterns of intensity will reap­

pear for a cell of the same species, hence employing the same number of layers, then, by 

selecting a few wavelength values in. the visible spectrum and examining the scattering 

pattern as a whole, it may be possible to recognise the particle’s signature, rendering a 

possible partial identification protocol.

Finally, it is also evident from Figure 3.3 that the patterns produced in the forward 

direction, that is to say from 0.05 to approximately 0.5 radians and within the optical 

spectrum, are similarly distributed in terms of intensity values. Similar arguments can 

be made for near-infra and infra red wavelength. This in effect predicts the fact that if 

only one observation point is used within this angular range and spectrum then it would 

be impossible to characterise, let alone identify, the particle under examination. This is 

obvious when one takes into account the fact that most of the variation of the scattered 

light intensity takes place from 0.65 to 7r; that is to say, several patterns of different shades 

of grey occur within this region of Figure 3.3. This implies use of the intensity patterns 

only. It is true that some properties may be estimated using a unique detector point, but 

to do this one should rely on the scattering of fluctuations, which is neither appropriate in 

terms of biological particles [105] nor the subject of this thesis.
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Incident
Field

Figure 3.4: Scattering Geometry for the modified Rayleigh-Debye approximation

3.3 Approximate solution for near-index particles

The interest in the near-index problem does not stem only from its mathematical interest. 

The subject of this thesis is bacterial cells in water environments where |m (r) — 1| <  

1. However a plethora of applications has been identified for potential solutions to this 

problem, as in the case of proteins in water [19], water drops in air [76] and interstellar 

grains [106, 77] to name just a few. We proceed in formally presenting our solution and 

generalise for multiple layers, from a modification based on including the effect that the 

propagation constant has on the passage of light through the ‘soft’ material of the cell.

The Problem Definition 3.1, illustrated in Figure 3.1, can be solved in the near-index 

case and for small ‘phase shifts’ between wavelets, satisfying 2 kd\m  — 1| <C 1, that pass 

through the body of the particle, using the Rayleigh-Debye Approximation (or RDG). 

The size restriction is such that if d is the largest linear dimension then the approximation 

is applicable for d <£ X /\m  — 1|. This restriction means that bacteria cannot be modelled. 

However it has been used in several publications [86, 5, 107, 105] with great success, 

which clearly indicates that the RDG limits [108] do not apply in practice. The latter has 

been investigated theoretically in [109] for fractal, self-similar aggregates. We will return 

to this issue in Section 3.5.

Following the physical basis of the Bom approximation, and referring to Figure 3.4, a 

particle illuminated by incident light with direction that of a unit vector k* will scatter light
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Figure 3.5: Depiction of the Scattering Plane in two dimensions: diffraction occurs at di­
rection k s, with respect to the incident field of direction k*. The angle between scattering 
and incidence is denoted by 0 . Far-field assumptions satisfied if observation plane P is 
placed at distance much greater than the dimension of scatterer.

independently within the particle. The scattered light has the direction of the unit vector 

k s. That is to say the wavelets w\ and w2 (Figure 3.5) will not be changed or distorted, 

and will only undergo a phase lag 5. However this assumption considers the particle to 

be ‘semi-transparent’ which is not necessarily the case [31, 66, 33]. Furthermore, due to 

this assumption the range of applicability is also limited. Using Definitions 3.4 and 3.6, 

we propose that

Proposition 3.1. A near-index, small particle will scatter light such that the wavelet o f 

any infinitesimal volume d V  within the particle will distort light as a function o f refractive 

index F (kOJ

The physical meaning of such a proposition implies that the phase lag which the scat­

tered light will undergo at wi and w2 depends not only on the larger distance that one 

wavelet will undertake as opposed to another, but also on the functional F. That is to say,

8  = sF (k, m (r)) (3.22)

where k, as we will see later, can be related to the difference of the distance that a wavelet
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Figure 3.6: A scattering particle of arbitrary shape with volume VQ, finite size. The 
infinitesimal volume dVj is also indicated

through w\ will have to travel further away to the one that would travel via w2. In Fig­

ure 3.4 the unit vector k* is assumed to be coplanar with the unit vector k s, which is the 

direction of scattering. In Figure 3.5 the angle between these two vectors is 0 . For r  in 

this plane, and without loss of generality, the observation plane P is normal to the direc­

tion of scattering, hence to the unit vector k s. Similar argument applies for the incident 

wave, following the direction of the unit vector k*. It should be noted that, for the far-field 

assumptions to be satisfied, the distance to the observation plane P must be much greater 

than the linear dimension of the scatterer.

In order to verify Proposition 3.1, we follow a derivation similar to when solving 

from Maxwell’s equations. Consequently, it is known that the scattered field E s at an 

observation point P  situated at distance R  in (Figure 3.6) and assumed to be at the far- 

field, is given by

_  k2 exv(jk0R)
5 = -------- 4t tR  ( * 5 X (3:23)

where p  denotes the dipole moment, following the effect of a far-field radiated from any 

dipole at direction k s. If E (r) is the field inside the particle, then the polarisation per unit 

volume within the particle is

P  =  (m (r) — l)E (r)  

with dipole moment p  =  V^P, hence
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P =  V5(m(r) -  l)E (r)  

As a result scattering at the far-field will be given by

=  k 2 exp(jk0R)
k s x k s x (m (r) -  l )E ( r )

where the scatterer is of finite size, arbitrary shape and is an inhomogeneous body. Due to 

this inhomogeneity, the relative refractive index m  is a function of distance within the cell, 

m (r). Let dVj be the infinitesimal volume around the point of r, with relative refractive 

index m (r). The differential contribution to the far-field will be

d E , =  -
k2 exp(jk0R) 

47tR
k s x k s x (m (r) — l)E (r)  dVj (3.24)

The physical meaning of a far-field can be visualised in Figure 3.6. It implies that 

|r | <C |K S| =  b due to positioning of the detectors at some point which makes their 

distance much larger than the linear dimension of the scatterer. Following Figure 3.6 it is 

easy to see that,

R  =  | K , - r |  =  v / ( Ks | - r ) - ( K s| - r )

R  = v / |K»|2 - 2 K s - r  +  |r |2 (3.25)

Due to the far field assumption |K S| '»  |r | it follows that |K S|2 +  |r |2 2  |K S|2. Hence

R  £  x /IK ,]2 -  2K S • r (3.26)

equivalently

R
2 K „ - r \ V 2

w ( ' - w ) (3.27)

Using the Taylor expansion [103, p i35] and noting that in this case higher powers will 

be negligible

/  2K S • r  \  V2 1 2K , t

V |K a|2 ) 2 |K a|2 '

~  K S • r
|K,|2

and from Equation 3.27 it follows that

2 !
i f — -— ) + 

{ |K a|2 J +
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R  3  |K ,| -  (3.28)

Since K s =  |K 5|ks we have that

R  ~  |K S| — k s r  (3.29)

As indicated in Figure 3.6, we denote the magnitude of K s by |K 5| =  b. From

Equation 3.29 it follows that

R  »  b -  k s • r  (3.30)

As a result the prerequisite of far field is satisfied by altering the phase term exp{jkR)

in Equation 3.24. That is to say, we approximate the phase term by exip(jkb — jk r  • k s) 

and the amplitude by 1 / R  «  1/6.

To calculate the scattering field and incorporating the far-field constraint (Equation 3.30), 

we have to integrate over the volume Va of the scatterer. This results in

e s = - j v  x  [ka x (m (r) _  1 )E (r) d V  (3.31)

and it is obvious that

E , =  -
k2 exp (jkb).

47t6
k s x k s x /  (m (r) — l)E (r )  exp(—jk r  • k s)

L JVo
d V

hence

„  k2 exn ijkb ),
E s =  T T — ^ k , x

47ro
k 5 x /  /  /  (m (r) -  l )E ( r )  e x p ^ / c r  • k s) dxdydz  (3.32)

bearing in mind that in Equation 3.32 the triple integral is a consequence of the three- 

dimensional form.

The internal field E ( r) is dependent upon the coherent wave interaction (wavelets) 

amongst different parts of the cell/particle. It is an unknown quantity, and to calculate it 

rigorously, we have to solve from Maxwell equations to establish

E s =  V x V x f  (m (r) -  l)E (r )G 0(ks,k j)dV  (3.33)
JVo

where G0(ka,k j) =  exp (jk \ks — k;|)/47r|ks — k;|, is the free-space Green function and 

E ( r) is the total field inside the particle.
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Using the solution from Equation 3.33 would be to use the Mie solution as in Sec­

tion 3.2 or variants, that is to say approximating by recurrence on the scattering series. 

The alternative is to use simplifying assumptions, such as the case with the Rayleigh- 

Debye approximation, where it is assumed that E ( r) «  Einc(r) =  e* exp(jk0r  • kj). 

Hence the internal field equals that of the incident E inc(r), which implies that the parti­

cle is ‘transparent’. However, the origin of the positioning vector r  must be placed close 

to all the infinitesimal volume scatterers if one wishes to accurately compute the scat­

tering/absorption caused by the particle. Clearly, most of the phase difference (lag) falls 

inside the scatterer. As a result, the assumption that incidence equals the internal field of 

the cell is not an optimal approximation procedure and it limits the applicability of any 

model produced.

To extend the range of the RDG, and by using the assumptions of Definitions 3.4, 3.6, 

and in conjunction with Shimizu in [95], it follows

E (r) «  e* exp (jm (r)k0r • k*)

where the electric field has the direction of e*, assumed perpendicular to k*. This modifi­

cation, ‘forces’ in Equation 3.33 the internal field to be taken into account. Substituting 

in Equation 3.23 we now have that

E- =  -
k 2 exp (jkb)

4irb
k= x kcX

x m (r) — l)e i exp(jk0m (r)v  • k* — jk 0m {r )r • k s)dxd?/d2;j

hence

_  k 2 expiikb ), r n
=  47r6 X t X

J J J  (m (r) -  l) exp(jk0m (r)r  • (k* -  k s))da;d?/d^ (3.34)

The new phase term 5 = k0m (r)r  • (k; — k s) relates to the difference between vectors 

that indicate incident field and scattering field. This vector substraction can be visualised 

in Figure 3.7. A useful way to relate the difference k d =  fc(kf — k s), where k = k0m (r), 

to a physical meaning is by taking into account the additional distance that needs to be 

travelled by different wavelets within the particle, until a detection (destination) point has 

been reached.
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Figure 3.7: Relationship between k*, k s and k<*

Corollary 3.2. Let vector r  designate a path within the boundaries o f the near-index 

particle. For any two infinitesimal volumes dV{, d Vj placed on the origin and ends o f a 

vector r  respectively, the additional distance that a wavelet described by scattered vector 

wave o f direction k s will have to travel as opposed to the wavelet o f incidence o f direction 

k* will be:

kd =  |kd| =  2fcsin(0/2) (3.35)

That is to say, kd has a linear relation to the sin o f scattering angle © and is parallel to 

the projection o fr  onto the bisectrix o f  the complement o f  0 .

Proof: Let © be as indicated in Figures 3.6 and 3.7. Let P r ^ r  be the projection of the 

vector r  onto a vector K*, where K* =  ftk*, and P r ^ r  be the projection of the vector r  

onto a vector K s, where K s =  k k s. It follows from Figure 3.8 that

kd =  P rfckir  -  P rfcksr  

=  r  • ki -  r  • k s 

=  r  • (kf. -  k s)

It is evident that the angle between k* , —k s is also 0 .  The vector (k^ — k s) lies on 

the base of the isosceles triangle denoted as ABC. If by 7  =  ACB we denote the angle 

between k  ̂and k  ̂— k s then it follows that 0  +  27 =  7r =  180°. Clearly, 7  =  90° — 0 /2 ,  

hence k* — k s will lie parallel to the bisectrix of the complement of 0 .  As a result, k d lies 

parallel to the bisectrix.
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Figure 3.8: Following Fig.3.5 for infinitesimal volumes d ^ , indicating projections of r  
on corresponding vector wave paths

From the isosceles triangle ABC and equivalently in Figure 3.7, the bisector of 0  

separates kd at two equal segments kd/ 2 . As a result, for the far-held approximation 

s in (0 /2 ) == (kd /2 ) /k  = kd/{ 2 k)\ therefore kd = 2fcsin(0/2).

■
In many applications the use of Equation 3.34 would be to treat this as the Fourier 

transform in three dimensions, as a function of m (r). Taking however the inverse trans­

form would mean reconstructing the relative refractive index. As a result, would have 

to be evaluated for all kdxi kdy, kdz and from Corollary 3.2, for kd up to 2k. The latter 

follows from Equation 3.35 where the maximum of kd is at 0  =  180°. The reconstructed 

relative refractive index will be limited to spatial frequencies <  2 k.

However inversion complicates the algorithmic development which would depend on 

the function of refractive index calculated by an inverse Fourier transform. We proceed 

therefore in trying to obtain a closed expression that depends only on the properties of 

the particle at the scattering points of detection. In polar coordinates, x  = r  sin 0 cos 4>, 

y = r  sin 9 sin (f> and z  = r  cos 6 . Changing the variable representation from Cartesian to 

polar coordinates we need to evaluate the discriminant
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dx dy dz
dr dr dr
dx dy dz
dO dO dO
dx dy dz
d<j> d(f> d<f>

and as a result

sin 9 cos 0 sin 6  sin 0 cos 6  

r  cos 9 cos 0 r  cos 9 sin 0 —r  sin 9 

—r  sin 9 sin 0 r  sin 9 cos 0 0

sin 9 sin 0 cos 9 

r  cos 9 sin 0 — r  sin 9
=  — r  sin 9 sin 0 — r  sin 9 cos 0

sin 9 cos 0 cos 9 

r  cos 9 cos 0 —r  sin i

dx dy  dz
dr dr  dr
dx dy dz
dO dO dO
dx dy dz
d<f> d<f> d<f>

= r2 sin 9 sin2 4> +  r 2 sin 9 cos2 0 =  r 2 sin 9

Using this transformation of Cartesian to polar coordinates we now have that Equa­

tion 3.34 will become

_  k 2 exp(jkb) r_ _ n
s = -4Vb 1 5 X s X

m  (r) — l)  exp (jr • kd )r2 sin0drd0d0

hence

Es =  _ ^ e x ^ 6) [ k a X k s X e j ]

m (r) — l)  exp (jk jr  cos 9) r 2 sin 9drd9d(f) (3.36)

Solving the problem for a multilayered sphere of radius d and relative refractive index 

distribution such that it portrays a radially changing m (r),

m (r) = <

m i, r  G (0 ,r\\ 

m 2, r e ( r 1 , r 2]
(3.37)

m n, r  G (rn_ i , r n]; d — rn 

we consider the case of a spherical model for the prokaryotic cell as an inhomogeneous 

particle consisting of a multi-layered sphere with an arbitrary refractive index within each 

layer. In effect one would assume that there are n  layers, such that the zth layer has outer 

radius T{ and relative refractive index ra*.

Taking into account that there is no dependency on 0, Equation 3.36 will become
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_  k 2 exp(jkb). r.
s = ------- 4^b  s X [ ’  X ^

m
2n

(m (r) — l)  exp (j2 k0m (r) s in (0 /2 )rc o s0 )r2 sin0drd0d0

n
7T

(m (r) — l)  exp (j2k0m (r)  s in (0 /2 )rc o s0 )r2sin0drd# (3.38)
_

By taking v = cos 6 , therefore — dv =  sin 9d9 we have that

_  k? exp(jkb), r_ -i 
=  4nb X  ̂ X

27r I f  (m (r) — l)  exp(j2A:0m (r) s in (0 /2 )n ;) r2drdv (3.39)

and it follows that

k2exp(ikb), - t
= ----------4?r6—  X f X

27r J  r 2 (m (r) — i)  /. exp(.72A;0m (r) s in (0 /2 )n ;)d rd i; (3.40)

Integration over u would now result in integration for the exponential (phase) term, 

and as a result Equation 3.40 can now be simplified.

That is to say either by using the Euler identities or by substitution of exp (± ja )  =  

cos a ± j  sin a  in conjunction with the trigonometric identities cos (—a)  =  cos a, sin(—a) = 

sin a, we now have

_  k2exp (ikb), r -i
5 =  47Tb—  s X f s X 8i]

a [ d 2/ '  / \ 1 \ sm (2 k0m (r)  sin(0 / 2)r)4?r /  r  (m (r) — 1) — \  ^  ' d r  (3.41)
Jo 2 k0m {r) sm (0 /2 )r

As a result we have proved that, within the cell’s volume, the triple integral of Equa­

tion 3.32 becomes such that E 5 for an inhomogeneous spherical cell/particle will only 

depend on the relative refractive index as a function of distance r  from its origin in its 

local coordinate system, as well as r  (Equation 3.41). To formalise this result:

Corollary 3.3. Assume a near-index, small particle o f spherical morphology and obser­

vation point at the far-field. The particle will scatter light such that the wavelet Wj o f
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any infinitesimal volume dVj o f direction from origin r, inside the boundaries, will distort 

light primarily as a function o f refractive index

Proof: From Equations 3.38 and 3.41 we have that any scattered light signal will depend 

upon a kernel which can be identified as

Within the boundaries of the cell all contributions from infinitesimal volumes will lie

relative refractive index distribution may be a non-linear function of radius. As a result E s 

and solutions for the amplitude of the scattered field, as well as its behaviour, will depend 

upon m (r); hence the particle will distort light primarily as a function of refractive index.

■

We can now use the schema described in Equation 3.37 and calculate the integral over 

r. However evaluating the integral as such would mean that we accept the narrow ap­

proximation m  —» 1 and the outcome of Equation 3.2, which is no longer valid due to 

Theorem 3.3. As per discussion on Definition 3.6 we wish to generalise our model to 

include the range \m  — 1| <  1 {generalised approximation). To take this into perspective, 

Hoekstra in [110,111] in an effort to examine the latter effect for the homogeneous spher­

ical particle case and under the generalised near-index regime, built an error map based 

on the standardised difference between intensities for the Rayleigh-Debye model, as well 

as the equivalent model from [95], as opposed to the Mie solution in [4]. It was found 

that almost 5% of the relative difference would be attributed to the narrow near-index 

assumption \m — 1| <C 1. In order to avoid these problems and effectively increase the 

‘phase-change’ limits in our model we reinstate the term (m2 — 1) / (m 2 +  2) for n-layers, 

that is to say (m2 — l) / (m 2 +  2). This term is commonly referred to as the ‘volume 

polarisability’ of the particle and is denoted by a{r), defined by

For the schema of Equation 3.37 the averaging effect on the polarisability will be such 

that a —> = V r1 — 1 )/(mi +  2)]. This is approximated as being equivalent

to the discrete average over the whole of the layered structure, and has been used in the 

past under different theoretical models, for example in [112] and partially in [106]. In our 

case we adopt the weighted average over the whole volume of the multilayered sphere as

u  =  2k0m {r) sin (© /2)r

within radius r. As to whether Equation 3.41 is directly solvable depends on the r and 

the distribution for the relative refractive index over the radial distance of the sphere. The

(3.42)
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found by integration of Equation 3.42 either with respect to r, by applying dV" =  47rr2dr, 

or directly with respect to V, and will yield

I f  771 (r) — 1 . _  J_  rm 2 - l  _
V  j v m 2 (r)-\- 2 Vn .m 2 + 2 1 m 2 +  2 1

(3.43)

It follows from Eq. 3.42 and 3.43, that the weighted average polarisability for the n-th 

layer would be expressed as

n - i  2 i
Ka. = (Vn -  Vn- 0 d n + V-_\ £  ^ T T o W  -  Vi-i)

1=1  1

dn = K  a -  \V„-,{Vn -  Vn- , ) ] - 1 £  ^ M )
Vn ~  Vn- i  “  m i +  I

For example, for a homogeneous sphere it follows that n  — 1 and so Vn_i =  Vo =  0 , 

and since

_ _  1 m{ -  1T, _  m\ -  1 s
E V ,m \ +  2 1 m l + 2

it follows that

Vi m l -  1
ai —   - a  — —„---------

14 -  0 m? +  2
in agreement with Equation 2.2; that is to say, a bacterium of volume V ,  modelled as a 

homogeneous body.

As a result, using Schema 3.37 and bearing in mind from Equation 3.44 that for a* 

applied as a weight on the terms for the solution of the scattering field, evaluation of 

Equation 3.41 over r  will result in

R. .gg,(Mh x [fc ̂  £ r-r g g y ,  (3.4!)
47r6

It is customary to formulate scattering functions in terms of Bessel functions. The 

Bessel function of order 3/2  is denoted as J3/2 and given by the formula [103]

T , . I  2 sin u — u cos u
J3/2 {u) =  \ ------------------------

V 7xu u
Evaluating for the n-th layer by using the notation from the proof of Corollary 3.3, 

so that now uiti =  2/com in s i n ( 0 / 2 )  and u^i-i = 2k0rriiri-i s in (0 /2 ) ,  the integral of 

Equation 3.45 would result in
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f rn sm (2k0mi s in (0 /2 )r )^  _
Jrn_ J  2k0mi sin(©/2)

(sin(Mn>n) ^n,n cos(wn)Jl)) (sin(tfn)n_;L) wn)Tl_i cos(wn>n_i)) 
(2 k0m n s in (0 /2 ))3

(3.46)

whilst using the Bessel function of the three half order it follows

1 .

'Tn sin(2fc0rai s in (0 /2 )r)
t ----------------------------- d r

n l 2k0rrii s in (0 /2 )
(3.47)

whereas for n = 1 then n  — 1 =  0 and we write r 0 =  0, so that only the first term in 

Equation 3.47, dependent on rn, appears whilst the second term is considered as ‘non­

existent’ . As a result,

and u iti = 2k0rriiri s in (0 /2 ).

The behaviour of the expression in Equation 3.47 is depicted in three dimensions in 

Figure 3.9. This figure illustrates the amplitude variability of the scattered field’s energy 

at angular detection points 0  G (0 ,7r), issued for different values of radius (r*) and for a 

relative refractive index of m* =  1.2. The incident wavelength is assumed to be 0.690/mi. 

A contour plot is also shown in order to further illustrate the increased amplitude variabil­

ity for equal increments of radius at the boundary of the n-th layer.

It is obvious that the amplitude increases as the radius of the particle increases. In 

effect the function predicts that larger particles of the same refractive index index will 

scatter more light at any detection point. Consequently, observing Figure 3.9, the pre­

diction is that for rn increasing, the scattering amplitude will also increase at the angular 

detection points 0 . Furthermore, by observing the contour plot, it is evident that the num­

ber of extrema increases with increased radius values. The latter two observations are in 

agreement with the general observation from the exact solution (Mie Axiom) as stated in 

page 31. Even though in this example we have not considered the effect of concentration 

of particles, we should also observe that for increased values of radius the angular scat­

tering patterns present maxima at the forward direction and with decreasing amplitude 

thereafter but with weaker and weaker maxima which still appear. This is in agreement 

with Mie’s theorem in page 31 of Chapter 2. As a result this serves as a numerical veri­

fication of the derived model’s validity, since it satisfies, in general, the exact solution’s

(3.48)
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0  (radians)

Figure 3.9: Behaviour of the solution for the n-th layer, using Bessel functions of order 
3/2. The scattering amplitude of the function (E s) for the n-th layer, is indicated on the 
z-axis at all detection points (0 ) and increments of radius rn G [0,4]//m. The relative 
refractive index value for the n-th layer is m n =  1.12. The contour of the 3D plot is 
drawn on the xy  plane (0 , r n).
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hypothesis concerning increasing radius [113, pp. 18-20], which is not immediately ap­

parent within the expression.

However it should be noted that it is expected that our n-layer mRDG spherical model 

would behave better for near index values of relative refractive index, due to its derivation 

from the Rayleigh-Debye regime (weak interactions between induced potentials). The 

latter is due to the fact that the curve will present unexpected high values of amplitude for 

increased values of relative refractive index at some detection points, and in particular at 

the forward direction.

It should be evident that u —> 0 as © —> 0 and the amplitude will tend to reach its 

highest peak, verifying that most of the scattering will take place in the near-forward di­

rection. We adopt the simplification of Berry in [24], where it follows by definition that 

if 0  =  0 then any derived Form Factor (commonly denoted as P (0 )  in such expres­

sions where S (0) =  jA;;}a(r)P(©)) results in a value of unity. Finally, the amplitude 

^/9ft(5(0))2 +  ^(^(O ))2, with 3ft, S' being the real and imaginary part of S  respectively, 

will depend only upon the propagation constant kQ outside the particle, the distance from 

the observation point and the linear dimension of the scatterer.

The scattering amplitude matrix S of Equation 3.4 and its elements can now be easily 

formulated by accepting the scattering plane coordinate system to represent the scattering 

amplitude matrix elements. It follows, since k s x (ks x e^i) =  — eSji and k s x (ks x e ^ )  =  

—eS)2 cos 0 ,  bearing in mind the particle’s spherical symmetry and taking into account 

Equation 3.47, that Equation 3.45 can be expressed as

k20 exp(jk0b) _ 
=  ------- :-------- e.

n ,------  ,---------

y '^ r j3/2K i) -  w h i s j  ̂ J3/2ki-i))
1 o

0 cos(0)
(3.49)

from where it should be evident that the scattering amplitude matrix relates to the scatter­

ing field so that

S = j k 30S (k e,k i)
1 0

0 cos(0)

where the scattering amplitude component S(ks, k*) is expressed by

(3.50)

n
S(ks,kf) =  (2tt)3/2 ^ ( a i r ? u i J /2J3/2(uiA) -  d i r ^ u ^ J 3/2( u v - i ) )  (3.51)

2 = 1
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Figure 3.10: A diagrammatic expression of the physical meaning of generalised n-layer 
Rayleigh-Debye spherical approximation. Note the similarities of this depiction with 
other disciplines, for example telecommunications engineering, from which the notation 
has been adopted.

The expression in Equations 3.50, 3.51 and 3.44 predicts the amplitude of light 

scattered from a single cell and it is the n-layered sphere extension model, which we 

will refer to as the generalised mRDG spherical model. The reader is reminded that 

uiti = 2k0rriiri sin(© /2) a n d u ^ - i  =  2/c0m ir i_i s in (0 /2 ).

This generalised expression can be applied to any population of n-layered spheres 

and would lead to better approximations of light scattered phenomena on real cells by 

simulated models. In effect its physical meaning (Figure 3.10) corresponds to the fact 

that a cell of n  layers will scatter light proportional to the sum of n  homogeneous spheres 

of corresponding r n and m n, by subtraction of contributions arising from the (n — 1) 

homogeneous spheres of corresponding r n_i but having the same refractive index, that is 

m n. To visualise this result, we proceed in graph depiction of Equation 3.51 illustrated 

in Figure 3.10. For =  r fu ^ f^2 and K ^_ i =  where it is retained that

(i — 1) in and consequently to (R^,--1), corresponds to the radius that encloses the

said layer of the cell r<_i. It follows that we have two corresponding constants per layer 

which are multiplied with the corresponding Bessel functions. The input to these Bessel 

functions is, in computational terms, an array of values (numbers) of relative refractive 

index in conjunction with an array of radius values for each layer which we employ in 

the model. This results in two contributing terms that are in turn subtracted after being 

multiplied by the polarisability of the layer in question. This is a significant outcome, not 

only because of the prediction/proposition that our generalised Rayleigh-Debye spherical 

approximation results in, but also because of its depiction. In effect, if one wishes to solve
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the inverse problem, that is to say from a set of experimental intensity values to obtain the 

optical properties of the cell, one would only need to employ an optimisation procedure 

where the ‘network’ will be such that multiples as in Figure 3.10. A test statistic to 

examine the goodness of fit, as is for example the standardised difference

N

£  |lo g /Pm- l o g / ^ e!|
rp _  P m = l _________________________________________________________ /O  CO N

R (N  + l)(log Imax -  log 

where log I™del is log 7 (0), where 7 (0 ) is given in Equation 3.53 and IPm is the array 

of experimental data points. As a result, if the array for experimentally acquired intensity 

values IPm is of dimensionality 7 G RPm then the solution space will be RPn where the 

problem has now been mapped so that RPm —> RPn, and therefore pn is the number of 

values needed to be found per layer: 2n  minus one in which ‘one’ represents the parameter 

of overall radius to be estimated by population inference. As a result, pn =  2n — 1 and 

we assume that pm > pn. Clearly, this results in a great reduction in the complexity of the 

problem, as in effect multiple models would be built and then compared to experimental 

data.

Furthermore, our approximation procedure correctly predicts the effect of removing 

layers. Putting m k- i  =  rrik will result in a multi-layered sphere where the (k — l)th  layer 

will disappear. This is true since the previous (k  — l)th  and A;th layers will merge to a new 

layer with m new =  m.k =  m fc_i, of thickness10 £new such that tnew = tk -f tk- \ .  Finally, if 

m k =  1 then the km layer becomes ‘redundant’, in the sense that the polarisability of this 

layer kk will only depend on the average polarisability of the cell with r = rk, and the 

contributions resulting from the layer will cancel each other. This can easily be verified 

by observation of Equation 3.51 and Figure 3.10. Consequently, the k-th layer becomes 

transparent to incoming light and as such does not contribute to the scattering amplitude.

To finalise our main result, that is the generalised mRDG multi-layered spherical ap­

proximation, and proceed to examination of our findings, we produce the formula for the 

scattering light intensity for 0 .  This would be considered identical to Equation 3.21 and 

as a result, the light intensity from such a cell can be expressed in terms of the elements 

of the scattering matrix S using the expression :

m  = ( I S ^ ) ! 2 +  IS fk s .k ^ c o se i2) (3.53)

where S(ks,kf) is calculated via Equation 3.51 with d — r n being the overall radius of

10Note that, for example, tk =  rk — rk~i
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the spherical cell and I* is the intensity of the incident light.

3.4 Evaluation of the approximation model

In the absence of experimental data, we proceed to evaluate our main result by relying on 

simulated models, that is patterns acquired from well established methods, and in partic­

ular the Rayleigh-Debye approximation as used and derived for a two layer model in [86] 

and the two layer Mie solution of [4]. In Figure 3.11, we provide the resulting patterns 

and for a two-layer sphere with outer radius 1/jm and core (internal) radius 0.9//m, where 

the core has a relative refractive index of 1.203 and the external concentric layer 1.128; 

hence the core is more dense than the cell wall. Since we simulate using a wavelength of 

0.514/un the refractive index of water assumes its commonly used value 1.336. The said 

model would correspond to depicting the cell with the inner sphere (core) simulating the 

behaviour of the bacterium’s cytoplasm whilst the outer layer simulates the cell wall.

By observing in Figure 3.11 the scattering patterns from the generalised Rayleigh- 

Debye and the corresponding exact Mie solution, it can be seen that the numbers of max­

ima are the same even though we have selected (on purpose) the case for which our model 

differs most profoundly from that of Mie. However, taking into account the pattern pro­

vided by the RDG approximation, it is evident that our result is not only closer to that of 

Mie scattering in terms of the number of maxima/minima but also in terms of the inten­

sity amplitude levels predicted. As a result, it should be expected that fitting our model 

to experimental data would result to fit more closely than that of RDG, particularly if 

one takes into account the log scale difference. That is to say, the absolute difference by 

which the RDG ‘misses’ the Mie scattering curve, is 4 orders of magnitude, whilst the 

generalised Rayleigh-Debye has a difference of 2 orders of magnitude. This is a problem 

often noted in terms of the orders of magnitude that approximation patterns cover [111]. 

Unfortunately, this problem is also apparent here: the orders of magnitude our general­

isation covers is greater than those of the exact solution and for all angles. It is evident 

that in both the Rayleigh-Debye 2-layer model and the generalisation that we outlined 

in the previous section, that they cover more orders of magnitude than the parameters’ 

equivalent of the 2-layer Mie solution.

The latter is more prominent for 0  being less than approximately 15° where our gen­

eralised model is producing too much light intensity (radiant power) and exceeds the Mie 

prediction by at least 3 orders of magnitude. This poor fit at low angles may be explained
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Figure 3.11: Illustrating patterns of angular dependence for 2-layer equivalent models of 
spherical bacteria: From top to bottom: the generalised Rayleigh-Debye approximation, 
the exact Mie theory and the Rayleigh-Debye approximation. Note that the number of 
minima of the generalised mRDG appears to resemble the Mie solution more closely than 
the Rayleigh-Debye model scattering pattern.
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Figure 3.12: A comparison between 2-layer equivalent models on backscattering (0  E 
(7r/2,7r)): the Rayleigh-Debye approximation (dotted line), the exact Mie theory (solid 
line) and the generalised mRDG approximation (dashed line). Note that the last minimum 
in the curve of the generalised mRDG is closer to Mie model than the Rayleigh-Debye 
prediction (illustrated in the figure via projection of dotted line on the axis of 0 ).

by the fact that the weighted average polarisability term that we have inserted in our mod­

els has an adverse cumulative effect at forward direction predictions. That is to say, upon 

multiplication of the weighted polarisability terms the intensity amplitude of the outer 

layers will increase by a factor defined by the outer layers’ relative refractive indices. The 

reader is reminded that outer layers and overall radius are primarily responsible for most 

of scattering at forward directions.

However, there are improvements over RDG models in terms of the appearance of 

the angular scattering extrema (maximum/minimum of the intensity values) at © >  90°, 

which can be observed in Figure 3.12. For example, by examining the last minimum 

appearing on the pattern of the generalised RDG, we can see that the generalised model 

follows the minima of Mie scattering closer than that of the RDG. We illustrate this by the 

use of a dashed line projection on the axis of 0 . The minimum for Mie is approximately 

151° whilst the RDG minimum is approximately 132°, resulting in an angular phase dif­

ference of 19°. The generalised prediction has its minimum at approximately 146° re­

sulting in angular difference of 5°. This improvement in backscattering has resulted from 

insertion of the polarisability term, as well as employing an internal field function that 

depends on the relative refractive index within the cell. That is to say, Proposition 3.1, as
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Figure 3.13: A two layer model from the exact solution indicated by the solid line and 
from the mRDG indicated by the dotted line. The core is assumed to be of radius lfim  
and corresponding relative refractive index 1.1 whilst the outer layer has radius 1.1 jum 
and corresponding relative refractive index 1.3

expressed in Equation 3.51, seems to work better on predictions for backscattering and 

for near-index particles; this is the case for bacteria in water based environments.

To illustrate the overall behaviour in predictions, another bacterium is modelled, as 

a two-layer cell, but we increase the values for the optical properties. That is to say, 

the core is assumed to be of radius l f i m  and corresponding relative refractive index 1.1, 

whilst the outer layer enclosed within the radius 1.1/im of the cell has a relative refractive 

index 1.3. The physical meaning of such a value corresponds to a cell wall that is more 

dense than the internal material of the cell. Again, in Figure 3.13 we note the similarities 

between the two patterns in terms of the values of 0  at which extrema11 occur, and also 

for the intensity amplitude. We remind the reader that the values for the optical properties 

used here have been experimentally derived by Berckman and Wyatt [70], also included 

in Table 2.2.

Finally we have to note the effect that additional numbers of layers has on backscatter­

ing. That is to say, in Figure 3.14 and for the generalised Rayleigh-Debye approximation. 

We have devised an experiment whereby the radius of the core of the cell remains the same 

but the number of layers increases from 2 to 5 for radius increments of 0.1/mi. That is to

11 By the term extrema we mean a maximum or minimum of a function. For example, the total number 
of minima and maxima that appear in a curve is the number of extrema.
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Figure 3.14: Resulting scattering patterns of angular dependence for the generalised 
Rayleigh-Debye approximation. The solid line depicts the result for 2 layers, the dot­
ted line represents results for 4 layers and the dashed line corresponds to 5 layers.

say for a 2-layer model the internal radius r\ = lfim  and external 7*2 =  1.1/im and as a 

result for a 4-layer layer structure it follows that [ri r 2 r3 7*4] =  [1 1.1 1.2 1.3].

A similar procedure is applied to the relative refractive index values except that now the 

applied increment is of to* ±  0.05. It is commonly understood that, when a cell is sus­

pended in a medium of a lower refractive index, the cell itself is responsible for small 

angle scattering. We can clearly see that this is true for our approximation procedure as 

well, due to the the fact that most high amplitude scattering is situated at small angles. 

This has been used in areas such as flow cytometry to estimate the sizes and concentra­

tions of cells. However, this is not the case for multiple layers, where one could postulate 

that the cell can be considered as having multiple concentric inclusions, all of which are 

surrounded by a cell wall. In this case most of the scattering is attributable to the particular 

structures within the cells [33].

Again we can clearly see in Figure 3.14 that the scattering amplitude increases with 

increasing number of layers and overall radius. Furthermore the inhomogeneities within 

the cell increase the amount of backscattering, that is the amplitude of scattering at angles 

larger than 90°. This illustrates the potential application of light scattering to elucidate 

whether scattering originates from inhomogeneous or uniform depictions of the cell. In 

the current example we observe that, at larger angles, scattering is mainly attributed to 

the inhomogeneity of the cell, and as a result this provides a possible means of real-time
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characterisation by observing backscattering. Depending on the relative refractive index 

of the core, that is to say the nucleus of the cell, and the number of layers employed, 

most scattering contributions can be decomposed by the procedure of Figure 3.10, hence 

solving the problem by fitting the experimental data to the model presented in this chapter.

Finally, another significant point to be made is by observing the 2-layer model of 

Figure 3.14, with a refractive index array of m  = [1.1 1.21], and the one of Figure 3.13,

where m — [1.1 1.3]. The latter corresponds to a model for a coccoid bacterium, with a

cell wall denser, that is more rigid, than the one with a smaller value of refractive index 

for the cell wall. Note that the number of maxima for the dense cell wall increases from 

8 to 9, as a result of increasing the number of oscillations within the nucleous/cytoplasm 

interface. This observation can also be verified from the Mie exact model. Theoretically 

speaking for a denser cell wall one would expect an increase in the number of oscillations 

observed in the angular scattering pattern. This becomes clearer if we contrast the results 

with those for a similar sized object but for different composition of the cell wall. This 

would be of great experimental value for determining either the Gram reaction of the cell 

or the issue of dormancy for bacterial spores, even though it is almost certain that more 

layers have to be deployed in the model. However a number of experiments would have 

to be done so that a database of such experiments is effectively constructed.

3.5 Validation and applicability limits of the approximation model

As mentioned earlier (Section 2.4) there have been several methods of solving the problem 

of light scattering by spherical particles in general. However, fewer are suggested for 

the n-layer radially symmetric particle. A careful algorithmic analysis of even the most 

popular of approaches (for example in [57, 114, 58, 106]), is absent. Because of this, 

as we have seen earlier (Section 3.2, Equation 3.14), the limits for calculation of the 

number of terms in the Mie series is based on older convergence criteria [10, 4] with 

questionable applicability to the n-layer problem. In such a situation, systematic checking 

rather than a few particular individual tests is needed to assess the validity of a theoretical 

method/numerical code. Unfortunately, a solution may provide an acceptable result in 

certain cases but fail under slightly different experimental circumstances. The parameter 

space for bacterial cells was reported in Section 2.2.

Bacteria sizes vary considerably, from half a micrometre up to several micrometres. In 

particular, cocci (spherical morphology) would be said to have a radius r  within the range

0.5/rni < r <  1.2/mi with a few exceptions, such as Sarcina ventriculi with a 4/zm radius
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and spore inclusions. In scattering experiments, cells are usually suspended in water 

based media and so the relative refractive index m  is close to unity and the cytoplasm’s 

refractive index value is close to 1.35, resulting in a selected range for m  in the studies 

reported here as 1 <  m  < 1.3.

Following the criteria set by [110], we present a relative error study for values of rela­

tive refractive index and radius as discussed. However, since we are dealing with multiple 

layers, the examination of single particle scattering is introduced in more detail. Hence, 

for each cell size defined by an overall radius, the thickness of each layer is proportionally 

assigned by the use of uniform random numbers in the range (0,1) (written (7(0,1)), so 

that for the £>th layer the radius will be =  r^+i — rfc+iU (0 ,1). The relative error is 

estimated over an average of R  runs, where for each run a corresponding random relative 

refractive index value has been provided within the range of interest. We insist on the 

use of uniform random numbers because in such way we do not bias our results. That is 

to say, any number within the said range has equal probability of being selected. In the 

analysis, only the average refractive index m  of the cell is illustrated for each value of 

overall radius r.

The relative difference metric E R is similar to the one reported in [110] but here 

we examine the light scattering intensity as opposed to the phase matrix relations. In 

particular, the error is a measure of the difference between intensities estimated by Mie 

and mRDG models and is normalised as:

N

\logIMie(iA8) -  logImRDa(iA8)\

E r =  (N  +  l)(lo g IMie(0) -  logIMi‘ (60)) (3'54)

The values used in the simulations were N  = 100, R  =  30 and A 0 = it/N .  More­

over, at a scattering angle 0o the light intensity of the Mie scattering function ( / Mze) is 

at minimum. Figure 3.13 depicts typical light intensity patterns for the Mie and mRDG 

models which are the basis for error evaluation through Equation 3.54.

Many authors including Hoekstra et.al. [110] have concluded that for a homogeneous 

sphere the mRDG model covers a significant part of the domain; particularly if one allows 

for error of 12% as compared to Mie scattering. However, we have found that in the 

case of multi-layered spheres this relative difference doubles. In particular, Figure 3.15 

depicts the error map between Mie scattering model and mRDG for two layer spheres. 

The grey scale represents the average relative error from 0% (black) to 30% (white). 

Generally speaking, in Figures 3.15, 3.16 the total average error does not exceed the 

limit of approximately 19%, even though small areas of 30% do appear. The latter can
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Sphere with 2 layers 7

r - overall radius Relative Difference

Figure 3.15: n =  2. Relative difference mapping between generalised RDG and Mie 
scattering for a two layer spherical model with corresponding point histogram.

be verified by consulting the error histogram of Figure 3.15 which shows that the greatest 

difference between the two models lies between 15 and 23%. The ‘error’ or relative 

difference between Mie and generalised RDG as depicted here shows a very irregular 

pattern. This is due to the fact that we randomly select values of and an average 

value over the whole cell is calculated and depicted. A similar argument applies for r*. 

The initial result is in effect indexed values of Er  corresponding to indexed values of 

radius and relative refractive index. A result for n  =  6 is depicted in Figure 3.16. There 

are four clear regions in the illustration of the Indexed Relative Difference between the 

two models. That is to say, a region of approximately 10% difference depicted with a 

shaded black colour, and three more shaded grey areas of a limit to about 22%. The 

white coloured areas mapping to a 30% difference appear not because of failure of the 

generalised approximation but due to sampling of extreme values resulting in outliers 

within the results, or due to the fact that some in-between values have not been sampled 

resulting in the maximum error being assigned by our simulation algorithm.

This error or relative difference is consistent throughout the two models for either 

2,3 ,4 ,5  or 6 layers. Additionally, the generalised Rayleigh-Debye model is an algorith­

mically faster representation, since Mie algorithms are at least 100 times slower (or more 

depending on programming skills) than their RDG or generalised Rayleigh-Debye coun­

terparts [4]. As a result, there may be advantages in using the generalised Rayleigh-Debye 

model in terms of the time taken to infer optical parameters.
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Sphere with 6-layers

Indexed overall radius r - overall radius

Figure 3.16: Relative difference mapping between generalised RDG and Mie scattering 
for a 6 layer spherical model. Both the result for indexed and its mapping to sorted values 
of (r, m) are indicated

In Figure 3.17 it must be emphasized that as the number of layers increases the max­

imum relative error margin slightly shifts towards higher r  values and covering a larger 

m  value margin. As a matter of fact Volkov and Kovach [57] state that for near index 

particles (high water content) the key factor in the Mie scattering behaviour is the thick­

ness of the layers. Thus it may seem rather surprising that the relative error increases not 

with increasing r values but with increasing average refractive index, as it is evident in 

Figure 3.17. This may mean that Mie theory is not particularly sensitive to changes in 

refractive index for larger values of radius. This indeed may have given rise to the rel­

ative error which may be attributed to the generalised Rayleigh-Debye approximation’s 

sensitivity to changes in refractive index. Returning to the earlier rare example of Sarcina 

ventriculi, in a simulation for r  =  4/zm and for various m  values, the average relative 

error was found to be in the region of 3 to 27%, with the larger relative error arising as 

m —> 1.3. Finally, within the domain of Prokaryotic cells, such large m -values are not 

often reported and, hence, the mRDG model may be applicable within the limits of the 

domain.

Testing the relative error of bacteria populations would also be performed using the 

same procedure as long as the assumption of independent scattering applies. However 

since the patterns will be a result of averaging over several sizes, which would minimise 

the overall difference between the models, the analysis would yield better results and so 

further illustrations are not included. Therefore, the apparent smoothing of sharp maxima 

(or minima) in the scattering intensity does not indicate degradation in performance of 

the n-layer mRDG model. It appears that the difference between the two models is at its 

maximum at about 25%. We have used the term relative error, which does not necessarily
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Indexed overall - r Indexed overall - r

Figure 3.17: From Left to Right relative difference maps between generalised Rayleigh- 
Debye and Mie scattering for: 3-layers hence n =  3 and 5-layers hence n  =  5. At the 
top we have the indexed relative difference mapping and at the bottom the corresponding 
averaged sorted indexed values.



portray the expected error under true experimental conditions. In particular, one has to 

bear in mind the much faster computation of the generalised Rayleigh-Debye models as 

opposed to the Mie equivalents. This can be explained as follows: calling t the number of 

terms to be calculated in the Mie series and n  the number of layers, and lmie the scattering 

coefficients, there would be a minimum of (lmien t) calculations. The equivalent number 

for the generalised Rayleigh-Debye scattering would be (/mr<i5(2n — 1)). In our imple­

mentation of both models on the same platform12, Mie models were at least 100 times 

slower than the RDG or our generalised approximation counterparts. As a result, for real 

time or time critical applications the generalised Rayleigh-Debye approximation is ex­

pected to be favoured over other more complex theories. The increased computational 

performance brings obvious advantages to cell characterisation.

3.6 Conclusions

In this chapter we have analysed and derived a model for bacteria that can be characterised 

as spherical near-index small particles. In that sense we proposed that the cell has to be 

modelled as an n-layer structure so as to include the contributions arising from all parts of 

the cell, in agreement with findings on internal structure from electron microscopy. With 

that in mind four major contributions can be identified:

1. Implementation o f the computer algorithm fo r  the n-layer exact solution. A verifi­

cation that for spheres, light scattering patterns present symmetry around the scat­

tering angle (even function of 0  G (0 ,2ir)), irrespectively of the number of layers 

deployed for the internal structure.

2. A generalised solution to the n-layer near index problem based on modification to 

the Rayleigh-Debye approximation. We have verified that for the popular model of 

2-layers, our solution, the generalised approximation, behaves closer to the exact 

solution than the model without modification at backscattering. Unfortunately, the 

problem in the orders of intensity that it covers has not been solved. Increased rela­

tive difference at forward-scattering angles increases the overall average difference.

3. We have established that the range of relative refractive index for which our gen­

eralised approximation is valid covers a significant part of the bacteria domain.

12A11 implementations are performed in Matlab (Release 12) and executed on a Microsoft Windows based 
computer system
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We have improved the condition for the relative refractive index (in particular for 

backscattering) from \m  — 1| <C 1 to \m  — 1| <  1.

4. The relative difference of the generalised approximation and the exact solution is 

on average at 19% irrespective o f the number o f layers deployed. Bearing in mind 

that we uniformly sample within a range m  E (1,1.5) this difference may become 

smaller by simply selecting a smaller relative refractive index range of values.

Contribution 1 is important as not many computer programs have been provided, even 

though many solutions for the said model have been published. However the programs 

are either not generally available or they can be found in a form that is not easy to use. 

We have used the Matlab technical computing language to do so, and ever since the pub­

lication of our implementation many people have either enquired or have been using the 

code.

Contribution 2 is of great importance in the domain of near-index cells and conse­

quently for most biological particles that need to be examined in vivo. That is to say, all 

light scattering equipment can adopt the generalised model and infer 2n —1 parameters for 

the cell within the bounds of applicability. As long as the medium in which the bacterium 

is suspended has an index of refraction close to the one of the particle then identification 

by the use of the inferred optical parameters may be possible.

Contributions 3 and 4 relate to the applicability limits of the generalised approxima­

tion. First we have shown that the relative difference from the exact solution is twice 

than what was previously believed. That is to say, the belief that modifying the Rayleigh- 

Debye approximation will result in a relative difference close to 10% does not apply. 

In fact, by employing multiple layers, the approximation differs from Mie scattering by 

approximately 20%. However, our significant find is that for our model, thence for the 

generalised Rayleigh-Debye, this may be true but for increased m  and r  values. In any 

case, it has been experimentally shown that for bacteria m  < 1.35, and as a result the 

approximation model/procedure that we offer herein may prove to be experimentally suc­

cessful.

Finally, our procedure would provide results within a few minutes and as such is not 

expected to significantly add in time to the production of results. We postulate that in real­

time applications it is expected to be favoured over more complex alternative theories.
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Chapter 4 

The generalised ellipsoidal 
Rayleigh-Debye approximation

It should now be clear that the mathematical and computational problems concerning 

light scattering theory for bacteria, modeled as small, near-index particles and of spherical 

geometry can be resolved with either Mie scattering or our generalisation to n-layers of 

the Rayleigh-Debye approximation. However problems still remain to be tackled in the 

case of non-spherical particles, and in particular ellipsoidal forms where departure from 

spherical symmetry can range from negligible to such that the major/minor axis ratio is set 

to model flat elongated particles, flat disc-like structures in a prolate or oblate spheroidal 

geometric shape and other forms. Furthermore there is a need to examine the effect on 

the scattered amplitude when modeling for populations of cells in this extension from 

spherical to ellipsoidal bacterial forms. The problem would be defined as,

Definition 4.1. From a collection of bacterial cells suspended in a water based liquid 

medium, which appear alone and resemble an ellipsoidal geometric shape, and which are 

illuminated by laser radiation, examine the effect that an assumed multilayered internal 

structure has on the scattered field in all directions.

Using the basis we have built in proofs and discussions for our generalised n-layer 

spherical Rayleigh-Debye solution, we now extend this to any ellipsoidal geometric form. 

We then examine the effect of non-sphericity, that is to say the axial ratio, on the scattered 

field and simulate for diluted suspensions that follow a size distribution 1. We provide 

throughout the reasons why backscattering is important even for ‘soft-scatterers’ like 

bacteria suspended in water, and we theoretically explain the need for development of 

instrumentation that collects scattered radiation in the three dimensional sense.

^ o s t  of the said in this Chapter have been published within the Institute of Physics series in Sensors, 
published in September 2003
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4.1 Introduction

In this chapter we will be using a different mathematical procedure to extend our previ­

ous model from spherical to ellipsoidal particles. This method is commonly known as 

the ‘method o f slices' and has been used in the past to model homogeneous particles as 

outlined for example in [100] and in scattering media [115]. However, the terms em­

ployed within proofs are defined loosely, and as a result we start by defining the basic 

terminology that is generally used within our derivations.

Definition 4.2. A line is defined in the Cartesian geometry sense as a straight one­

dimensional ‘figure’ of infinite length and no thickness, uniquely determined by any pair 

of points in the three dimensional space R3 of which the segment they create is the shortest 

path between them, hence defining a one dimensional subspace of the vector’s three di­

mensional space. Vectors are quantities having both magnitude and direction, as opposed 

to scalar lengths on a line that only have magnitude.

As such if one wishes to take slices of a solid, which are perpendicular to the line that 

defines the limits within the particle, then one needs firstly to define the line on which 

these slices are to be taken and secondly to consider the plane of which this line is a 

member.

Definition 4.3. If an arbitrary solid of volume V  is cut at infinite planes perpendicular to 

some line, in the Cartesian geometry sense, then infinite cross sections will be generated, 

which are said to have volumes of infinitely many small thicknesses, each of which is 

called an infinitesimal thickness; hence a single slice would be described as the area of 

small thickness.

As we will see later, an arbitrarily shaped slice results from an arbitrarily shaped solid 

and if we assume that its thickness is infinitively small, then as a direct consequence of 

the limit ds, calculating a volume of a slice reduces to calculating the area of the slice.

Definition 4.4. The scattering field amplitude elements in the Maxwell/Stokes formalism 

for any particle irrespective of external geometrical shape and internal morphology can 

be separated to two contributions of which one is the Form  Factor. The Form Factor 

is defined in this chapter as a function of scattering position (9, <j>) that depends on the
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geometric properties of the cell; namely the orientation and size in conjunction with the 

ratio of asymmetry.

However, due to insertion of multiple layers, there is a need for re-exploration of the 

effect of the Form Factor to the scattering amplitude. That is to say, to the above definition, 

we need to add the case of non-homogeneity and its effect on refraction.

4.2 Approximate solutions on near-index ellipsoidal geometries

As we have shown in Chapter 3, the generalised Rayleigh-Debye approximation would 

be applied for a particle of arbitrary shape as any infinitesimal volume at any point within 

the particle can be utilised so that the particle is a collection of such points with infinitely 

small volumes. Under the paradigm of our main result, that is to say the generalised 

Rayleigh-Debye spherical approximation, the extended condition \m  — 1| <  1 will hold 

if one allows for a relative difference of 18% from the exact solution and as long as 

1 <  m  <  1.3. In terms of the scattered field from an arbitrary particle we recall that

If the distribution of relative refractive is considered to be similar to that of the sphere 

in the schema of Equation 3.37, that is to say, the relative refractive index in polar co-

m (r, 9 ,4>) = mi, where i — 1 , 2 , . . . ,  n  denotes a layered structure. Then a further sim­

plification would be performed, so that

It follows that the amplitude of this field with respect to the scattered field of direction 

k s as opposed to that of incidence with direction k*, will be

and relating this to a form factor P (k s, k;), which is the quantity within the scattered 

field’s amplitude that depends on the geometric shape of the particle and the internal 

structure, which in our case is a layered particle then

k° ex̂ k°b\ s x [ks x e .] J  d (r)exp (jr  • k d)dU (4.1)

ordinates at some distance r  within the particle will be such that it will have a value

n

(4.3)



However as we have illustrated by the proof of Corollary 3.2, the expression within 

the kernel of Equation 4.3, commonly referred to as the phase lag 5, of any pair of in­

finitesimal volumes is 8 = r  • k^. In terms of the modification on the Rayleigh-Debye 

approximation, following Theorem 3.3 and by applying our proposition, from which we 

consider that the infinitesimal volume will scatter light depending on the relative refrac­

tive index of the layer it occupies, then Equation 4.4 becomes

cident and scattering fields, then this difference will lie on the bisectrix o f the complement 

o f the scattering angle 9 and would be expressed by the distance on the bisectrix (p).

Proof: From Corollary 3.2 of Chapter 3, it follows that r  • is a projection of r  onto 

the difference between unit vectors k* (incidence) and ks (scattering). The angle between 

(ki, (—ka)) equals the scattering angle. Since (k* -  ks) lies on the base of an isosceles 

triangle and denoting the angle between (ki5 (kt  —  ka)) by 7 , then the total of angles 

within the isosceles triangle will be 6 +  27 =  180°; hence 7  =  90° — (9/2).

It follows that (kf -  ka) can be thought of as being parallel to the bisectrix of the 

complement of 9. As a result kd can be found by assuming that it lies on the bisectrix. Let 

p to denote the projection of r  on the bisectrix of complement of 9 (Figure 4.1). It follows 

that

(4.5)

where on this occasion k<* is a unit vector denoting the direction of k^.

Lem ma 4.1. Let r  denote the direction and distance r between infinitesimal volumes 

within the boundaries o f the cell. I f k d denotes the direction o f the difference between in-

r  • (ki — k a)
V |k; — k a|

r  • (ki — k a) =  p|kf — k a|

kd =  p \k{ -  k a|

where

|kf -  k s|2 =  2 -  2kj • k s =  2(1 -  cos 9)

It follows that
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|kj — k s |2 =  4sin2(0/2)

and as a result

kd =  2psin(0/2) (4.6)

where the last step follows from the fact that 2 sin2 A  =  1 — cos 2A  and placing 

A  = 6/2.

m

This lemma postulates that the scattering amplitude of the particle could be calculated 

by taking slices perpendicular to the bisectrix, which are very small in thickness, instead 

of solving directly over the whole volume of a particle with no axis of symmetry.

However, the integral of any function relating to a solid, for example of functional 

form £(rc, y, z ), over its volume is defined as the limit of the sum of all elements £ (x , y, z) A V ,  

where AK is a subinterval of a partition of an interval of values for £ , and the limit is 

taken as the number of subintervals tends to infinity, hence the length of each tends to­

wards zero. As a result the scattering amplitude can be expressed as the infinite sum of 

infinitesimal areas along a line that passes through the solid (Figure 4.1). Taking this into 

account, if we now assume, without loss of generality, that k; is parallel to the z  axis of 

a global coordinate system then k s makes a polar angle 6 with respect to it, and on this 

occasion the scattering angle 0  defined in the previous chapter is equivalent to the polar 

angle that we defined here. As a result, and by assuming that p  is the projection of the 

positioning vector r  on the bisectrix, then

5 = 2k0rriipsm(6/2) (4.7)

where the latter follows from S = k0rriikd, where from Lemma 4.1 we have that kd = 

2psin(#/2), and here we remind the reader that kQ = 2'k/X. All points along the plane 

perpendicular to the bisectrix that pass through the endpoint of the positioning vector r  

will have the same phase lag. As a result, the integrals of the type of Equation 4.5 can 

be most easily evaluated (Lemma 4.1) by integrating over volume elements which consist 

of cross sections perpendicular to the bisectrix. Consequently integrating by means of 

cross sections which occupy an area A  and infinitely small thickness, that is to say dp as 

illustrated in Figure 4.1, will result in Equation 4.5 being much simpler. It can then be 

evaluated by
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Plane of cross section 
I

H

Line of Bisectrix of 
(180- 0)

x

Infinitesimal slice 
of area (A)

I

Figure 4.1: Illustration of integrating by taking cross sections of the solid found by planes 
perpendicular to the line of the bisectrix. The cross section shown here in detail has an 
area A  and infinitesimal thickness dp, where p  is the projection of the positioning vector 
r  on the bisectrix. Note a change in the assumption of incidence; the incident direction 
denoted by ki is parallel to the z  axis of a global coordinate system, and the scattering 
angle is the polar angle 6, and as a result, linking this to Chapter 3 ,9  = 0 .
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n  POO

P (6:4>) = ^ 2 d i  A (p)exp(j2kom ipsm (0/2))dp  (4.8)
i=i J - 00

Take for example, a homogeneous spherical particle, and note that planes normal to 

the bisectrix will result in circular cross sections of radius r = (a2 — p2)1/2, where a is 

the radius of the sphere and p is the distance along the bisectrix. The area of such circular 

cross sections will be ttr 2. Taking into account the spherical symmetry of the particle it 

follows from Equation 4.8 that

P(0, <j>) =  i m2 +  2 /  7r̂ °2 ~~ 6XP^2komPsin^ ) ) dP
Q 77?̂    1 T)

P ( M )  =  7  2 . 9  /  -  ( - ) 2)exp02A:om psin(^ /2))dp  (4.9)
4  771 “t-  Z  J  _p CL

Let the ratio q = p /a  and following the notation from the previous chapter, u = 

2kQm a  sin (0/2). Taking into account that the radius of the slice is constant then dp =  adq, 

Equation 4.9 may be written as

P(0> <f>) =  ~ĵ 2 +  27ra‘3 /  ^  ” q2  ̂ex^ 0 ^ K ,masm(e/2)q)dq  

3  m 2 — 1 f 1
P(0> <£) = 4^~2' + 2yrfl3 J ^ exPCw)d9 (4-10)

Bearing in mind that exp(juq) =  cos(uq) — js in (uq) in conjunction with the fact that 

cos(—uq) =  cos (uq), it follows that

s th ̂
P ( M )  =  4 ^ 2-+2  70 0 - ~  f)co s(u q )d q

OITI2 —  1 ,  , O .  ,  .

=  ira —2 ^ {3/u )(sm u  — u co su )  (4.11)

which is equivalent to the result provided in [95], apart from the fact that we have rein­

stated in Chapter 3 the term of averagewolume polarisability. In effect we have a result 

quite similar to the one obtained for arbitrary incidence, that is, of Equation 3.51 and 

for i =  1. This example can be said to be a theoretical validation of the correctness of 

the procedure which we used for integration via cross sections through producing similar 

results. The functional form will not be exactly the same since simplifying assumptions 

have already been introduced in advance, for example with respect to the angle of inci­

dence and scattering. The latter would be performed, without loss of generality, in order 

to attempt to solve the problem of ellipsoidal geometries, n-layered structured, and shape.
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We are interested in solving the problem for an ellipsoid of semiaxes (a, b, c) in Carte­

sian coordinates. The equation for such an ellipsoid is given by

( )2 +  ( f )2 +  (~ )2 =  1 (4-12)a b c
The equation of the plane tangent to this conicoid at the point 0  on its surface 0 ( x i , y \ , z\) 

is known to be [102]

x x i yyi z z \ „
—T  4" tJT ^— T  =  (4 -13>

Let the direction cosines of the bisectrix as shown in Figure 4.1 be /, m  and n  re­

spectively, where in vector form it is so that ki =  n, k s =  m . The plane normal to

this direction and tangent to the ellipsoid at the point 0 (x1} ylf z{) will be given by the 

equation

Ix +  m y + n z  = g (4.14)

where g needs to be determined. However the plane described in Equation 4.13 is

equivalent to the plane described in Equation 4.14, and as a result a point 0  on the surface

of the ellipsoid will result in

la2
= —

Q
mb2

yi =
Q

nc2
Zl = ----

Q

(4.15)

and as a result substituting the values Equations 4.15 to Equation 4.12, since the said 

point lies on the ellipsoid, we will have that the expression for calculating the unknown 

parameter g is

g = y /  (la)2 + (mb)2 +  (nc)2 (4.16)

The plane perpendicular to the bisectrix whose equation is

Ix +  m y  +  n z  = p < g (4.17)

will cut the ellipsoid in an elliptical section whose area is given by [103]

. 1 — (p /  g)2
A  =  7rabc K— ~ (4.18)

Q
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mn. en

mi, Gj

m2, e2

Figure 4.2: Cross section of the n-layered ellipsoid. Note that the ri— 1 layer is at distance 
gn- i  from the centre of the ellipsoid; whilst the n-th layer area is placed between pn_ 1 
and Qn with relative refractive index m n.

measured along the bisectrix. Therefore, recalling Equation 4.8, one would now substitute 

the area of the ellipsoidal cross section of Equation 4.18 to obtain

The integral of Equation 4.19 would be evaluated over each of the homogeneous re­

gions of the n  symmetrically placed coatings within an interval [—Qn, Pn]> as denoted in 

Figure 4.2. For the internal part of the cell, that is to say within the region [—pi, £1] we 

evaluate as follows.

By noting that, as in the example for the homogeneous sphere that we have provided 

earlier in this section, the integral depends on variable p and by substituting the ratio p /g i 

by a new variable w = p /g i then dp = Qxdw

It should be clear that p  is the distance from the centre of the ellipsoid to this plane

exp(j2k0m ipsin(6/2))dp (4.19)

irabcd '0miQi sm (9/2)w )dw (4.20)

and by letting ui = 2k0miQi sin(0/2), Equation 4.20 is simplified to

Trabca (4.21)

It follows that
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2nabca

p (0»0 )J-e i =  27r abc&i ^  J3/2 (^1)
wi

(4.22)

where J 3/2 is the Bessel function of order 3/2. The remaining terms that need to

we have developed in Section 3.3, and the reasoning of the generalised Rayleigh-Debye 

spherical approximation, a layer can be thought of as a collection of elements that will 

scatter light independently of any collection of elements of another layer. It is therefore a 

natural consequence that the A>th layer of the cell will scatter light proportionally to that of 

a homogeneous ellipsoid of corresponding g* and m*, by subtraction of the contribution 

arising from a (k — 1) homogeneous ellipsoid of corresponding g^-i but having the same 

relative refractive index m*.. Bearing this in mind and for the k-th layer we write:

where u ^ t = 2k0m,iQi sin(0/ 2), which effectively means that the subscript i  is taken with 

respect to the distance from the centre of the ellipsoid p £ [—gn, gn]. Generalisation for 

an n-layered ellipsoidal cell is now possible since the form factor of Equation 4.4 can be 

given by the expression of Equation 4.23, but for n-layers. Returning to the notation for 

the scattering amplitude from Equation 4.3 we now have the generalised Rayleigh-Debye 

ellipsoidal approximation such that

be evaluated in Equation 4.19, correspond to each of the n-layers. Following the model

47ra6cdfc(
'k,k uk,k- 1

n
(4.24)

i=1
where i £ N* and

(4.25)

with initial conditions

Gi.i — 2U2 J 3/2CM1) , Gi,o =  0 (4.26)

In order to illustrate the physical and functional meaning of the expression in Equa­

tions 4.24 to 4.26, of which the internal variables are defined within the text, we refer



-K

Figure 4.3: A diagrammatic illustration of the generalised n-layer Rayleigh-Debye ellip­
soidal approximation as a graph network. Once again we use the formalism of notation 
from other engineering principles. The node denoted by 0  means the i — 1 value with 
respect to the array of values and for the largest linear dimension only.
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to Figure 4.3. In this graph depiction we have deployed n  symmetrically placed layers 

around the ellipsoidal core. The core’s contribution is the same as that of a homogeneous 

ellipsoid whilst the remainder needs to be taken as two further contributions. As a result 

we must insert an indexed value i — 1 in the input of any layer thereafter and with respect 

to the array of values for g. The two contributions are then following a sum over a multi­

plicative factor denoted by Ki. The total sum of all contributions results in the scattering 

amplitude S2 which is in effect the amplitude of perpendicular polarisation with respect 

to the scattering plane. To obtain the amplitude of polarisation parallel to the scattering 

plane Si one should multiply by the term cos 6. The latter is due to the fact that the 

Rayleigh-Debye approximation derives from Rayleigh theory which states that by defin­

ition only the elements (Si, S2) are of interest. Consequently, since the generalisation of 

the Rayleigh-Debye approximation which we offer herein has a point of departure from 

Rayleigh theory we adopt the de facto case as stated, and for the subsequent calculations 

of the scattering matrix elements.

It should be evident that the result given in Equation 4.24 for ellipsoidal shaped par­

ticles/cells, is quite similar to that of Equation 3.51 for spherically shaped cells. The 

differences in the two models lies on the distance from the centre of the particle and along 

the bisectrix g.

4.3 Geometrical properties and the n-layer approximation

In the previous section we applied our reasoning method to the geometry of general ellip­

soids where the major axis of the ellipsoidal linear dimensions that is a , 6, c, are related 

so that a > b > c. However, what must be defined per layer is the distance from the 

bisectrix p*. In turn, to calculate this distance we need to take into account the position of 

the particle in spatial dimensions, that is to say in its three dimensional space. Clearly, the 

later depends on the positioning of the ellipsoid, and hence depends on the relationship 

between the bisectrix and (9, <f>).

Let us assume that the major axis of the ellipsoid is placed along the x-axis. The 

dependence of the bisectrix on 9 and cf) is made explicit when we define the direction of 

the major axis of the ellipsoid with respect to that of incident light and scattered light. 

As such, let a  be the angle between the incident beam and the a;-axis of the ellipsoid. 

Furthermore, let fd be the angle between the bisectrix and the x-axis of the ellipsoid. We 

then have the formation of the spherical triangle in Figure 4.4. The expression of depen­

dence between all angles defined follows from the direction cosines as defined earlier and
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Figure 4.4: Spherical triangle showing the position of the major axis of the ellipsoid (v ) 
with respect to the directions of incidence (i ) and scattering (s). The bisectrix has the 
direction (p).

has been calculated by many. Due to the similarity of the orientation parameters for the 

ellipsoid we follow [100, p95] and we write

e e
cos p  =  — cos a  sin -  +  sin a  cos -  cos </> (4.27)

In this expression, the only angle that needs.to be calculated is that of p. We will call 

this the orientation angle or aspect. Angles 6 and (j) are the angles that are characterised 

in a simulation procedure as inputs. For example if one wishes to map the results for the 

scattering amplitude on all three spatial dimensions then all points in space must be taken 

into account. In effect, it should be that 6 e  (0 ,2n) whilst <f> e  (0, ir). Consequently, by 

assuming or randomly selecting a particular angular incidence then this would be consid­

ered as a useful procedure for calculating the orientation angle. For example, by letting 

a  =  45° =  7r/4  then it follows that cos a  = sin a  = \/2 /2 ,  whilst for say (f> =  60° =  tt/3  

then cos </> =  1/2 and from Equation 4.27 we have that

V 2  . o , V I  e
c°s/3 =  — ^ - s i n -  +  — c o s -

By assigning values for 6, one would now calculate the corresponding cos f3 values and 

in effect compute the distances p*. Particular discrete values are reported in Table 4.1 and 

for the resulting dependence on p . The values form of an input array

P =  [1.2094 1.4116 1.5148 1.6178 1.8235]
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0 0 7r/6 7 r /4 7t/ 3 7t/ 2

cos(0/ 2)
sin(0/ 2)
cos({3)

1
0

0.3536

0.9659
0.2588
0.1585

0.9239
0.3827
0.0560

0.866
0.5

-0 .047

0.7071
0.7071
-0 .2 5

Table 4.1: An example for calculating the values for orientation angle (3 depending on 6 
and for a  =  7r /4, (f> =  7r /3.

in radians, which is equivalent to [69.29 80.88 86.78 92.69 104.48] degrees. To

generalise from this example we have generated a table of values similar to Table 4.1 

where 6 E (0,27r). For the cosine amplitudes of f3 and (0/2) an apparent lag between 

the two functions is illustrated in Figure 4.5 and as such a non-linear relationship exists. 

To explain the physical meaning of this relationship one must recall that on the scattering 

plane we assume that we have a number of detectors placed on a circular surface at the 

far-field, whilst the plane is defined by 0. Consequently, the scattering angle becomes, in 

a sense, the observation angle and we can now use this as a visual aid to understanding 

that as we scan at a different detector perspective and for increasing angular observation 6, 

then the direction cosine of the bisectrix (x cos (3) and as such the bisectrix itself gradually 

moves further away from the viewpoint of the detectors.

To put this into context and to better present resulting patterns of angular dependence 

from our model we investigate the special case of spheroids. That is to say we parametri­

cally define the geometry of the cell so that b = c — s and a = ts, where a, 6, c are those 

of the general expression of the ellipsoid in Cartesian form in Equation 4.12, s is a sample 

from an array of values for size of some linear dimension and t denotes an axial ratio be­

tween the now two major axis of the spheroid. Substituting these values in Equation 4.16 

for defining the limits of q, and bearing in mind that the bisectrix forms an angle (3 with 

the x-axis, it follows that

q =  s y j t2 cos2 (3 +  sin2 (3 (4.28)

We can now clearly see the difference between the model for spherical particles and 

that of ellipsoids. The scattering amplitude model for spheres depends on the variable 

Ui,e ~  r  where r  is the radius of the sphere, whilst the spheroid depends on the variable 

uit£ ~  s y / t 2 cos2 (3 +  sin2 (3. As we have illustrated the relationship between the scatter­

ing angle and the aspect of the ellipsoidal volume is non-linear. The relationship of the 

scattering amplitude with the scattering angle is also expected to be non-linear, resulting 

in polar scattering patterns of relative asymmetry. Let for example a three layer spheroid 

to model an Escherichia coli bacterium, for which it is known from Table 2.4, Chapter 2,
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Figure 4.5: On the example for calculating values for orientation angle. A non-linear 
relationship between the cosines of (3, (0/2) is revealed in the plot between the cosines 
(bottom). The plot situated on the top of this figure, clearly illustrates the lag between 
the cosines and for values of 6 £ (0 ,2ir). We have used the values of the example of 
Table 4.1, that is a  =  45° =  7r/4  and <56 =  60° =  7r / 3 .
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that the average refractive index is 1.35, hence the average relative refractive index would 

be 1.02 and for incident wavelength of A =  0.514/xm. The size is assumed to be inferred 

from a volume of 1.1/zm3, hence s = lf im  whilst a = 1.1/zm. We illustrate our finds in 

Figure 4.6.

For calculating the values for the dependence of g on (3 (Equation 4.28), we assume 

that (j) =  7r/3  whilst in Figure 4.6, we have from top to bottom that the incident angle 

a  changes for three distinct cases. That is for a  =  0, 7t / 4 , 27t — 7r /4 . The second case 

(a  =  7r /4) is the one that we reported earlier in the example for calculating the term 

cos p. In all graphs the solid line represents scattering at 9 e  [0,7r) whilst the dashed line 

represents scattering at 0 e  (ir, 27r]. This depiction is also followed in the construction 

of the polar plots that can be seen on the right of each light intensity pattern and plotted 

in a logarithmic scale so as to emphasize the extrema of the curves. Note that within 

these patterns the azimuthal angle </> is not taken into account since a single case is only 

investigated ((f) =  7r /3). The relative refractive index values are determined as an array, 

so that mi =  [1.04 1.1 1.01] relating to the three layers, whilst for the sizes of g we

have assumed that the core dominates the cell’s volume, implying that the cytoplasm is 

the largest structure within the bacterium. As a result Qi =  [0.8s 0.15s 0.05s] where 

s =  l . l f im .  As a result the smallest internal structure is the outer shell, implying that the 

cell wall is of thickness p3 =  0.055/im.

At the topmost plot of Figure 4.6, we have that the polar plot (right) presents a sym­

metrical pattern. This is what one would expect to find since the axis of symmetry of 

the particle can be said to be directly illuminated by the incident radiation, which verifies 

the prediction in Remark 3.1 in conjunction with Definition 3.8 of Chapter 3. This is the 

reason why the two patterns of the Intensity plot on the left coincide. The remaining two 

plot explore the asymmetrical case, that is to say when the incidence is not directed to the 

spheroid’s axis of symmetry. It should be evident that the resulting pattern is not symmet­

ric, hence the intensity pattern does not coincide and the polar plots present a significant 

difference in the number of extrema as well as their amplitude. Note however that at the 

plot for a  = 2tt — tt/4, we have a reduction on the number of extrema, which leads to the 

assumption that as the particle rotates around its axis of symmetry then, even though the 

intensity’s amplitude remains on average the same, the oscillations of scattered light tend 

to become less frequent.

Finally, one should observe the lack of mirror symmetry between the second and third 

polar plots of Figure 4.6. This feature arises due to the (f) value ((f) =  7r / 3) which causes 

the orientation of the particle to be different. As a result, the surface that the incident
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Figure 4.6: Scattered intensity from an ellipsoid with different source radiation at inci­
dences of a  =  [0,7r /4 , 77t / 4] resulting in the plots indicated from top to bottom respec­
tively, with the equivalent polar plots on the right. For the cell it is assumed a 3-layered 
structure with relative refractive index array of values =  [1.04 1.1 1.01] and array
of values for the distances from the centre of the cell Qi =  [0.88 1.045 1.1].
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radiation illuminates differs between the two cases and so will the two polar plots. It is 

also related to the polarisability of the cell as incorporated in our generalisation but it is 

of greater importance in terms of the intensity’s amplitude.

This example, illustrates the effect of rotation, and how it would affect inference in 

terms of size. That is to say, many have linked the number of maxima presented in a 

scattering curve to that of the size that a particle may have. It should be evident through 

the observations that we have mentioned, how such a treatment of light scattering patterns 

may lead to erroneous results.

R em ark 4.1. Particles that do not present any form of spherical symmetry, will present 

on one hand a non-symmetrical polar light scattering pattern which depends primarily on 

the orientation and shape of the particle whilst on the other hand, the number of oscilla­

tions evident in scattered intensity will reduce as the particle rotates around the incident 

radiation source.

It should be evident that an average over a number of orientations must be included in 

order to have a more precise prediction on the optical properties of the cell. This however 

brings another problem that the experimenter will face: that is, whether the number of 

detectors placed on the scattering planes is sufficient, as well as whether this would be 

solved by simply adding detectors along several planes of angle </>. On this note we devise 

a new experiment whereby we model prolate spheroids, where the axial ratio is greater 

than unity, i.e. t > 1 and the particle is not spherical. Note that as t increases so will the 

elongation of the particle. We identify three distinct cases; namely the prolate spheroid 

which we call type I, where the axial ratio is such that t =  1.4, a prolate spheroid type II, 

where t =  2.8 and finally a prolate spheroid of type IE, where t =  14. We have computed 

the far-held angular scattering patterns for 9 e  (0 , 2ir) and cf) e  (0 , tt) employing our 

generalised approximation of Equations 4.24 - 4.26 as depicted in Figure 4.3. The incident 

radiation is assumed to be at a  =  7r/2 and the results shown are for parallel polarisation 

so that the log intensity results will be mapped on the Z  — axis  and along the X  — Y  

plane as shown in the collection of three dimensional plots of Figure 4.7.

Common to all plots is the irregular pattern behaviour as we move further away from 

the near forward direction which is placed in this ‘laboratory coordinate system’ at X  = 

Y  —> 0. There appears to be a circular wave structure for the 3D scattered intensity 

pattern. As expected, the prolate spheroid Type I, exhibits a scattered behaviour close 

to symmetry due to its small axial ratio value, hence ‘mimicking’ the behaviour that an
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equivalent sphere would have on the said incident radiation. Local extrema are obtained 

depending on the shape that the incident beam of radiation faces, and it is evident that the 

dependence on scattering angle 6 is dominant on the near-forward and forward scattering 

on the planar grid. However at the backscattering angles there is a profound dependence 

on both polar angles (6, 0 ), as a result of the curvature that the incident beam faces.

As we have seen earlier increased 6 values mean that the bisectrix is moving further 

away from the scattering plane. The latter refers to taking into account that angular points 

are used along the plane of 6, and the detectors are placed around this planar grid only, 

which will result in their viewpoint ‘missing’ incoming scattered light. Since we have 

now inserted the azimuthal angle (f) then the curvature facing the detector points will be 

enhanced, hence becoming more sensitive to the shape and curvature of the said bacter­

ial cells. Furthermore the peak present at the near forward angles, seems to be slightly 

broader for the least elongated particles than the ones with increased elongation. It is also 

clear that the backscattering observed, is more pronounced as the elongation of the cell 

increases, which again returns to the realisation that there is a strong dependence on the 

curvature being illuminated by incident radiation.

A strong 0 dependency is therefore clearly apparent, hence proving, at least theoreti­

cally, that there is a need for light scattering instruments that are able to acquire scattered 

light in both polar angles 2. Finally, another significant find is that in the three types of 

spheroids under examination, the minima of the scattering patterns become deeper with 

more pronounced elongations similar in a sense to the find as noted for backscattering. 

The abrupt ripples that can be seen underneath the planar grid have been ignored, since 

they are expected to be of no experimental importance since averaging over orientations, 

size distribution, number of layers employed and so on, is expected to diminish such 

features in the scattering pattern.

4.4 Evaluation of the ellipsoidal approximation model

So far we have seen how our generalised Rayleigh-Debye approximation can be extended 

for use with particles that exhibit no spherical symmetry, and have explored the effect of 

orientation and shape under the paradigm of elongated spheroids of a 3-layered internal 

structure. We have also seen that abrupt artefacts caused by the deep extrema of the 

scattering patterns, are apparent in any Rayleigh theory variant, as in the case of our 

generalised spherical and ellipsoidal approximation. However, the use of these models

2This is the basis for our patent submission outlined in Annex E.
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Figure 4.8: An ensemble of N 0 particles within a volume AV  ̂ that is within the ‘cone 
of reception’ of detector. The detector in this depiction is assumed within the solid angle 
formed by its cone of reception as cast in the total volume Vt.

for possible identification due to the numerous features they offer should be evident. In 

particular, the effect of shape and curvature on backscattering angles was also investigated 

and reported via simulation on single particles. We have left unanswered two fundamental 

problems:

1. Populations o f  bacterial cells in suspension. In any experimental setup require­

ment, it is, in general, more desirable to be able to identify distinct features from a 

suspension of cells in the water medium; hence within a cuvette of some volume, 

usually a few ml at a time.

2. The effect that the number of layers employed for modelling a particle, would have 

in an ensemble that would answer the modelling problem posed above.

Consider the ensemble of particles as per Figure 4.8. Let N 0 particles in a volume A V  

in such a way, so that we would label the particles as 1, 2 , . . . ,  N a. Let E j  be the scattered 

field from the particle j .  Due to linearity of Maxwell equations we can write

(4.29)
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The scattered intensity will be

No No
|E |’ =  £ e , X ; e ? (4.30)

3 = 1 1=1
This double summation should be separated into two terms, since we have two cases, that 

is I = j  and I ^  j .  As a result,

No No No
|E |2 =  £  I E / +  (4.31)

j=1 j=l 1=1 >

where in the second term, that is the double sum of (E jE z*) it should be clear that I ^  j .

Denoting the ensemble average by angular brackets, that is to say, by taking the en­

semble average over |E |2 to be ( |E |2), it follows that

( |E |2> =  f ^ l E / )  +  £  X )<E ,E ?) (4.32)
j=1 j=1 1=1

The term E jE f deserves extra consideration in terms of the phase lag 5 between par­

ticles. As we have noted earlier, for the scattered fields of the j -th and l-th particles we 

would have E j =  |E j| exp(j5j) and E / =  |E*| exp(jSi) respectively. Therefore,

(E,-Ef) =  <|EJ-||E,| e x p 0 (^  -  Si))) (4.33)

As a result, one would come to the conclusion that the lag between the j-th  and l-th 

particles depends in effect on the difference between the paths that their scattered fields 

will take and consequently on the separation that exists between them. In other words 

the Euclidean distance dji that separates the particles. Therefore if we let 8j — Si = 

O(kdji) then the ‘randomness’ of this distance is now of interest in the evaluation of 

Equation 4.33. Allowing for dji to be considered as a random variable and following a 

commonly used criterion [101], so that its standard deviation a  is such that v{dji) > A2, 

then O  is randomly distributed with a phase lying within (0 ,2n) radians; hence (E^Ef) —>

0. Equation 4.32 can now be simplified and it follows that

<|E|2) =  X ^ d E jI2) (4.34)
3 = 1

This finding implies that if the separation between particles is large enough then for 

computing the intensity of the ensemble we only need to consider the sum of scattered 

fields per particle within the volume of interest. We are using the phrase volume o f  interest 

since a detector has a ‘cone of reception’ which is cast over the total volume V. As such,
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each detector receives light scattered within this cone of volume VQ, depending on its 

position in space.

Furthermore, the physical meaning of Equation 4.34 can also be seen in the experi­

mental works of Wyatt in [3], Schimizu in [17] and others [84, 116]. That is to say, given 

bacteria that appear alone, where there is no binding of cells together (i.e. at low con­

centrations, that is, when the total volume of the bacterial cells with N 0 being their total 

number does not exceed a total of N 0 <  106 cells per ml of water3 based solution) then 

the independent scattering assumption is satisfied.

R em ark 4.2. When the independent scattering criteria hold true, that is, either the math­

ematical condition 0(kd ji)  is randomly distributed and dji is sufficiently large or the 

experimental limit of N 0 <  106 cells per ml of water based solution is satisfied, then for 

computing the total intensity from a number of cells we need only take the average sum 

of scattered fields per cell within the volume captured by the detector’s cone of reception.

Remark 4.2 implies that multiple scattering effects are negligible, and that the scat­

tered field is the sum of the scattered fields from N a particles. The latter also means that 

no correlation between the fields scattered from each particle is allowed to take place. 

As a result the angular brackets within the sums disappear. As a direct consequence we 

have that the total scattering amplitude element |S(0, (j>)\ can be calculated by adding the 

scattered waves from all particles in the detectors’ captured volume. As such,

N 0

|S(M I = £<|S;,(0,<«|2) = JV0(|S(M)|2> (4.35)
j =1

and if the particles within the ensemble follow a size distribution P r(s) then,

The latter follows by the definition of the size distribution. That is to say, for particles 

that obey the size distribution Pr(s) so that the number of particles per unit volume with 

size between s and s 4- A s is P r(s)ds, it follows that

(4.36)

From Equation 4.36

(4.37)

3This is an experimentally set criteria for example in [16] and is often taken to be loosely defined unlike 
the distance between cells criterion o-(dji) >  A2
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r W , 0 l 2Pr(«)d5
(is ( 6 , m  =  J0 X  —  (4-38)

and by substitution from Equation 4.37,

,2\ _  /o  lSj ( M ) | 2P r(s ) d s( \ S ( 0 , m  = JU p- ) d -  (4.39)

In the context of a size distribution, Equation 4.39 can be considered as a summation 

of both the numerator and denominator, if and only if sufficiently large samples are to be 

collected from Pr(s). For example, the statistical Gaussian distribution commonly known 

as the normal density function P r(s) =  e x p (^ - )  can be sufficiently approximated as long 

as the number of samples collected are no less than 30, a direct consequence of the Central 

Limit Theorem [117, p231, p238]. That is to say assuming that now N a depicts the size 

ranges with midpoints si, S2, . . . ,  sn0 then the condition N 0 > 30 must be satisfied for 

reduction of the integral to a summation over ranges of sampled size midpoints. In any 

case, and where N 0 is large enough,

<is(e, m  «  j  , ;  (4.4°)
S £ i  lS (s t ) |2P r (s t )

E £ i  P r (s* )

However the normal distribution and the gamma distribution, commonly used to model 

bacteria populations in their natural environments, have unrealistically long tales. That is 

to say, the array of values for Pr(s) would not reach zero as s —> 0, even though bacteria 

sizes do not exceed a specific range. Moreover from a variety of sources of variability 

that result in the way that bacteria sizes are distributed, only a few are dominant. Even 

so, a parameter for the effect of population skewness on the left (negative skewness) or 

right (positive skewness) of a size distribution with mode sQ should be included. Wyatt 

has inferred such a distribution in [16] such that

- f ( l - * 2)4 for z  E [—1, 1]
Pr(s) =  I K ’ 1 J (4.41)

\ 0  for z i  [ - 1, 1]

where z = 1.084(s — s 0 ) / k s 0) ,  and k  is equivalent to a variability measure.

In order to incorporate the skewness effects, we have allowed for k, in the parameter 

z  of Equation 4.41 to be assigned independently on the left and right of mode sa. Hence 

we now re-write the expression for z  to be,

f 1.084(5 -  s0)/(«ieftSo) for s < s0 
z  — \  (4.42)

I 1.084(s -  s0)/(«rightSo) for s >  s0
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Figure 4.9: Size distributions with /qeft +  /cright =  0.30. The solid line curve depicts the 
symmetrical size distribution, /cieft =  bright- The dashed line curve depicts an asymmetric 
size distribution with negative skewness, Aqeft =  0.2, K,r-lght =  0.1. The dotted line curve 
depicts an asymmetric size distribution with positive skewness, Avieft =  0.1, ftright =  0 .2.

i

The spread of the distribution is dictated by the constant k  which is assigned inde­

pendently at the left and right of the mode sG, resulting in an asymmetric distribution that 

avoids long tails as shown in Figure 4.9 depicted by dashed and dotted lines. It should be 

evident that for Acieft =  bright the distribution is symmetric (Figure 4.9, solid line) and so 

becomes the mean, whilst k, is approximately equal to 3 a /sQ with a  being the variability 

measure (standard deviation) of the symmetric distribution. It is known that in any un­

synchronised culture and in nature we expect a variation in size of at least 30% . This 

effectively means that Aqeft +  bright >  0.30. In Figure 4.9 we have provided an example 

whereas /cieft +  Acright =  0.30. The distribution as provided here can be applied not only to 

singlet cells but also to any other configuration of bacteria.

In order to investigate the effect of the number of layers in ensembles of particles 

as modelled in this section we have implemented, in Matlab, computer simulations for 

estimation of the light scattered intensity from the asymmetric bacteria populations of 

Figure 4.9. As noted in Chapter 2, bacterial cells present a structure that consists mainly 

of the cell wall, cytoplasmic membrane, cytoplasm and nucleoid. Other morphological 

characteristics may also appear such as a slime layer (capsule) external to the cell wall 

or spore inclusions in the cytoplasmic area. As such, the use of an n-layered model as

103



defined here is justified since a more accurate representation of the cell can be achieved 

when each morphological characteristic is modelled as a separate layer. In the present 

study it is assumed that nmax =  6. Following the findings of many studies (Table 2.2, 

Chapter 2) for the relative refractive index values that have been found to be true for 

waterborne biological cells and in line with our findings in Section 3.5 we randomly 

select an array of values to be deployed within the range 1 <  m  <  1.3. Furthermore 

we randomly assign a number of orientations per cell for which the scattering amplitude 

would be calculated, and subsequently averaged over these orientations.

The size values are sampled as noted from the size distributions we have shown and 

for asymmetry such that Kief t =  10% and bright — 20%. For every s values sampled 

we deploy a scheme to assign the array of values for size per layer and for the specific 

bacterial cell. Since the cytoplasm dominates the internal part of the cell it is assumed 

that it will always have a size value Q\ =  0.8s. The remaining layers will have a value 

Qi+i =  / s  +  Qi so that /  is a uniform random number where /  <  0.2 and relates to 

the proportion of s allocated for the specific layer thickness, whilst for the outermost 

layer’s compartment it follows that gn = g = s. To assess the applicability of our models 

we have concentrated on the examination of the pattern resulting from the ratio of the 

population averaged scattering matrix elements, — | (^33) |/ | (^ ii) |* This ratio has been 

shown to emphasize the effect of backscattering [56] [118] and it is the reason we have 

adopted it, as well as due to our findings on backscattering as per our discussion in the 

previous section.

First we investigate the effect of altering the axial ratio (t  in Equation 4.28) on the 

scattering amplitude ratio; that is to say for t <  1, t =  1 which corresponds to spherical 

morphology, and t > 1. In Figure 4.10, top, results for a three layer model are presented. 

Note that for the plot of t > 1 (doted line) there are two prominent peaks at angles ~  90° 

and 130°; whilst for t < 1 (dashed line) there is a prominent peak at ~  142°. The peaks of 

t > 1 at 90°, 130° are unique, as no other pattern presents such a significant local maxima 

in magnitude. Consulting the results of additional layers in the model, that is for four lay­

ers in Figure 4.10, middle, and six layers at the bottom, we verify that there is a consistent 

appearance of large peaks for each of the patterns for different t  values. For example, for 

n=6 the peaks for t > 1 appear at ~  90° and 133°, whilst a magnitude peak for t < 1 ap­

pears at ~  136°. These results indicate that there will always be a significant difference in 

the patterns of — KS33) |/ |  (£11) | allowing for the morphological characterisation or ‘high- 

level’ identification of bacteria in water samples by simply monitoring this ratio. To take 

this into perspective, cocci present a near-spherical structure whilst coliforms present an
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Figure 4.10: The angular dependence of the scattering ratio for an n-layer ellipsoid. Top: 
n=3, a three layer ellipsoid model with different axial ratios (dashed line: t < 1, solid 
line: t =  1, dotted line: t > 1). Middle: n=4, a four layer ellipsoid model with different 
axial ratios. Bottom: n=6, a six layer ellipsoid model with different axial ratios.
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Figure 4.11: Isolating prominent peaks from the simulation results of Figure 4.10. The 
cutoff point for selection of a peak is set at 2 arbitrary units. The three layered particles’ 
ensemble peaks are denoted by 50% grey-scale, the four layered ensemble by 25% grey­
scale and finally the six layered ensemble by 75% greyscale.

elongated spheroidal structure and Bacilli present structures of axis of symmetry. Evi­

dently, this level of differentiation is feasible as shown within our simulation.

This statement is further supported by examining particular peaks of Figure 4.10. 

Inasmuch, we have isolated specific peaks that are dominant for each ensemble of n- 

layered particles in the sense that for a cutoff limit set per particular ensemble of internally 

structured particles, only the peaks that contribute above this cutoff point are selected. 

The result is indicated in the stem plot of Figure 4.11. When we have a three layer 

model (denoted by 50% grey-scale) prominent peaks appear at ~  82° and 90°. By adding 

one layer to the model, that is for populations of four layer ellipsoid cells (n =  4), the 

magnitude peaks now appear at ~  98°, 130°, 162°. For populations of six layer ellipsoid 

cells (n=6) a further angular shift on the magnitude peak results in a maxima at ~  133°. 

Similar arguments can be made for particular maxima of the remaining patterns. As a 

result we can now generalise the statement made above not only to the axial ratio but also 

to the number of layers that suffice to describe a bacterial cell.

R em ark 4.3. Our results indicate that by monitoring the ratio — | (-S33) |/ |  (-Sii) | and for a 

particular local maxima (peak), a significant difference appears, in these patterns, which 

allows for identification of geometrical morphology (spheres or ellipsoids) and also their

3-laycr peak

4-layer peak

6-layer peak
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internal structure (number of layers).

Adding to our earlier discussion concerning the shape of bacteria and possible iden­

tification, we can propose that certain species may employ a particular number of layers, 

even though it has the same volume, axial ratio and shape. In that sense it may be true that 

further identification may be rendered possible. As a matter of fact inference of relative 

refractive indices is possible via our generalised Rayleigh-Debye ellipsoidal approxima­

tion, hence an extra feature is provided that may be useful for identification purposes and 

would be used, as outlined.

4.5 Theoretical considerations and problems

Here we report a problem that may be of interest when trying to further extend the gen­

eralised approximation to spheroids of the n-th dimension. This problem, whose solution 

we have outlined in this Chapter, and for n-layers, has yet to be addressed. However, 

our method would be applied, hence the theoretical value of our procedure is further il­

lustrated. Unfortunately, there may be cases such as the one that follows where analytic 

expressions are not feasible and computational problems may arise.

Let a super spheroid described by the equation

? ) ■ + ( ¥ ) " - '
If n  —> oo then the ends of this subset of super ellipses will flatten out and will closely 

resemble bacteria from say the Bacillus family. Taking the axis of symmetry to be on 

the x-axis, we can characterise the shape by this volume of revolution around the x-axis. 

Cross-sections as taken previously, that is infinitesimal slices perpendicular to this line, 

will form a circular area. In particular, planes normal to the x  axis would be described by 

the simple equation x  = h where h is constant and the slices will be described by

yn + zn =  (1 -  )")&" (4.44)

and it follows from Equation 4.44

z =  ±6(1 -  (x /a )n -  (y /6)”)"/2 (4.45)

Elements of the slices as per Equation 4.45 contribute two phase differences. One 

needs to integrate over a plane that the independent variable is considered to be y  with
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y sin /3 being the projection parallel to the bisectrix of an element that has a distance y 

from the centre of the elliptical section. Hence the first contribution will be

5y = 2km (y) sin(0/2)(y sin (3) (4.46)

The second contribution is from the position of the slice with respect to its projected 

distance from the origin of the bisectrix, hence x  cos /?. It follows that

5X = 2km(x)  sin(0/2)(a;cos/?) (4.47)

Hence we can now solve by integrating over the total volume of the multi-layered 

particle, so that for the i-th layer,

p - b i ( l - ( x / a ) n ) n / 2 )  p a

/  exp(j5X)i)h ( l  -  (x /a )n -  {y/a)n) n dy  /  e x p ^ ^ d a ;  (4.48)
J b i ( l — (x/a)")1/2) J — a

Solving in a manner as per Section 4.2 and by letting e* = y /b it results in

where uXji = 2kmibi sin(0/2) sin (3 and uVti = 2krriiai sin(0/2) cos /3. Unfortunately, the 

solution of Equation 4.49 is not analytic. Hence a compact expression as provided so far, 

that may lead to real-time characterisation cannot be given. However, the reader interested 

in this line of research would in fact deploy a suitable numerical evaluation procedure as 

long as one takes into consideration that

1. As uXti —> 0 then J i —> 0.

2 . or Uyti —> oo then cos uVti —> 0.

hence normal quadrature techniques will probably fail [119] especially in the above two 

limiting cases.

4.6 Conclusions

In this chapter we have derived a new model for the ellipsoid and the subcase of spheroids 

as an n-layered structure. We have found that both the azimuthal and the polar angle 

(0 ,4>) in an assumed laboratory Cartesian axis system is important; and in particular the 

backscattering effects. We have also provided a modelling procedure for population of 

bacterial cells. Three major contribution are identified:

(4.49)
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1. A new method for determining the scattering amplitude or the form factor from 

particles of no apparent geometrical symmetry and for multi-layered internal struc­

tures.

2. A new method for spheroids of multi-layered internal structure, in conjunction with 

a physical justification for polar asymmetry in the scattering pattern.

3. A new procedure for treating populations of cells that exhibit skewed frequencies on 

their linear dimension, as long as the condition of independent scattering is satisfied.

Contribution 1 refers to our implementation of the method of slices as a new treatment 

on the case of multiple internal layers and for ellipsoidal geometry. Taking into consider­

ation the example given in Section 4.5 it can be seen that it has an application to a number 

of problems of that kind, even if an analytic expression cannot be obtained and one needs 

to resolve a numerical approximation for the indefinite integral.

Contribution 2 is significant if one considers that, for example, coliforms have been 

so far modelled as homogeneous bodies. With our model a new line of research may be 

opened where the experimental data can now be used for inference of n  relative refractive 

indices. A byproduct of our mathematical solution is the theoretical justification that dif­

ferential scattering patterns are heavily dependent upon orientation and the surface that 

the incident beam will illuminate. This finding illustrates that since in the three dimen­

sional sense better results may be obtained, then a justification for use of such instruments 

is provided. Finally it should be clear that back-scattering will play an important role in 

the characterisation of such particles, even in the case where some axis of symmetry is 

apparent.

Contribution 3 relates to the problem of populations of cells. The modification that we 

have applied on the size distribution of Wyatt, incorporates the effect of having several 

process fluctuations within the environment that the bacteria have been sampled from. 

Hence, this procedure provides the possibility of having samples directly examined be­

fore any calibration takes place, by simply selecting only 2 parameters and the expected 

size average/mode. In agreement with our findings from the second contribution, we have 

shown that the scattering amplitude elements ratio and its amplitude peaks at back scat­

tering angles, may be sufficient for immediately being able to identify how many layers 

there may be within a said sample of bacteria. As such an extra feature towards partial 

identification has also been offered.
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Chapter 5 

On the violation of the independent 
scattering condition

In the previous chapter we have derived a mathematical model for ellipsoidal geometries 

of an n-layered internal structure. As a result the bacterial cell is considered as an n- 

layered structure with no apparent axis of symmetry. We have also provided a procedure 

for modelling populations of cells where the sizes follow a skewed distribution and the 

independent scattering condition djj > X holds true. Here we wish to examine the prob­

lem where the bacterial cells are exceeding numbers of 106 per ml of solution and as a 

result djj <  A, hence the assumption of independent scattering is violated. We examine 

the problem:

Definition 5.1. For bacterial cells of the same species, hence the same internal structure, 

that exhibit an ellipsoidal external morphology and are densely populating the water based 

medium, investigate the effect that violation of independent scattering will have on the 

scattering pattern in relation to the number of layers deployed.

We now use the model developed in Chapter 4 and we investigate suspensions that 

are not sufficiently diluted. We subsequently establish a limit on the number of layers 

that can be used by performing stochastic simulations of the behaviour of light that is 

scattered from particle to particle, i.e. multiple scattering. We numerically illustrate that 

the asymmetric polar scattering pattern is still evident due to particles’ orientation and 

curvature facing the multiple scattered light. Furthermore we illustrate that backscattering 

still contributes significantly to the intensity profile despite its apparent washing-out of 

detailed features, which is due to increased populations, resulting in the increase of the 

probability of multiple scattering.
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5.1 Introduction

When we have a particularly high volume fraction of scatterers, say an ensemble N0 in a 

participating medium, then correlation, between fields of say a j-th  particle or scattering 

event and the l-th scattering event, will be evident. As a result the total scattering field 

will now be

( |E |2) =  £ ( | E J |2) +  £ E < E i E n  (5-1)
j = 1 3=1 i= l

and the interaction (EyEJ') can no longer be thought of as a vanishing term, since

(EjEJ) =  (|Ej||E,|C>(A;,djj)) (5.2)

where the phase interaction O  depends directly on the particle separation of the j-th  and 

l-th scattering events, that is djj. This is again considered to be a random variable but, 

in contrast to the mathematical modelling of Section 4.4 of Chapter 4 for populations of 

cells, it now assumes a standard deviation < A2. Experimentally speaking, for

concentrations where the number of cells per 1ml of water based medium, is greater than 

106, then this correlation of fields effect is most pronounced and multiple scattering, as is 

commonly known1, would take place.

Unfortunately, only limited cases of the general multiple scattering problem have ap­

peared, and there is no exact solution [115]. Therefore most rely on probabilistic simula­

tions in order to examine its effect and so we adopt a stochastic procedure in subsequent 

sections.

5.2 A stochastic algorithm for multi-particle simulation

Taking into account the paradigm of radiative transfer, light can be considered as a packet 

of photons. When a photon is emitted, it travels some distance and eventually meets a 

particle where one of two outcomes is possible: the photon will be scattered or absorbed. 

That is, since the relative refractive index of a particle can have both real and imaginary 

parts, the relative refractive index would be m  =  +  j$s(m), where §=(m) relates to

the amount of absorption from the particle.

On stochastic simulations of radiative transfer the absorptivity of a material can be 

calculated directly from the surface fields [99]. From Ohm’s law [87, p i 14] it is known

1In some cases, and for dipole potentials, the term re ta rd a tio n  e ffe c ts  is used, instead of multiple, 
scattering.
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that for most materials the steady state of the current density is proportional to its field, at 

a given temperature, and the steady state density can be calculated from the set of cross

sections of such surfaces [97]. The power absorbed in each region of the surface fields is

obtained by integration of dissipation in the region of the particle [99, pl41, p353]:

Pa = \U [ ^ (m (r ))lE (r) |2dr (5-3)" Vo
where E (r) is the field within the particle and d r  =  (da;, dy, dz), hence the integration is 

to be performed over the three dimensional volume of the particle. The absorption cross 

section is defined by

*« =  17TT (5-4)
P j l

where \Sj\ is the power flow magnitude of the j-th  particle and the albedo u j ,  that is a 

measure of fraction of scattering cross section over the total cross section (oa +  os) with 

os being the scattering cross section, will be

u j  =  ■ -  (5.5)
&s +  cra

from where it is evident that u j  G [0,1].

Since bacteria are assumed to absorb a minute amount of the energy of incident radi­

ation, this is considered to be negligible (^ (m (r)) —» 0), therefore, in Equation 5.5, only 

scattering is taken into consideration and from Equation 5.4, <tg —> 0. This effectively 

means that the probability of a photon being scattered or absorbed by an ensemble of 

particles, commonly known as the stationary albedo [120], becomes

~ 725(J5 t l s (Is
w — — i — =  — ;-----  =  1 (5.6)nsvs + n acTa n s(js +  0

meaning that all light will be scattered when it meets a particle in its path. This is true 

both of incident light (injected photons) and of light previously scattered from another 

particle. In Equation 5.6, (n s,n a) denotes the proportion of scattering and absorbing 

particles respectively with corresponding cross sections (cr5, <tg).

Light propagating in the medium is assumed to be undergoing m successive scatter­

ing events ( 1 , 2 , . . . ,  m) from N 0 particles located at d i, d 2, . . . ,  djv0, generating scattered 

light with direction of vectors kS)1,kS)2, . . . ,  ks>m respectively. For the increased popula­

tions we will be using later it can be said that the number of scattering events will be at 

least the number of the scattering particles in the densely packed medium. The absolute 

coordinates (X , Y, Z)  of the Cartesian system are defined with respect to the entrance
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Figure 5.1: Absolute global coordinate system and Scattering local coordinate system. 
For i scattering events to take place with m  being the last one. Note that incident radiation 
or photons with direction ki, coincide with direction of the Z  axis of the global coordinates 
system whilst the last scattering event follows the direction k ^ 0 at polar angles 0no, ^ no 
of the local coordinate system.

point of the incident light wave with direction k*, coinciding with the Z -axis of the global 

Cartesian system, as indicated in Figure 5.1. The scattering coordinate system is defined 

with respect to the origin at the m-th scattering point, which corresponds to the last scat­

tering event, with Cartesian coordinate system (xm, ym, zm). After the series of scattering, 

events has been terminated then the scattered light leaves the medium in direction k 5 at a

The distance vector d  between two successive scattering events will be negative ex­

ponentially distributed [121], under the assumption of a homogeneous suspension in a 

solvent (liquid medium; that is water in our case)2. Consequently, the probability density 

function will be given by

th scattering event, d = dm- i>m. The parameter L is defined as the mean free pathlength 

of the random medium. The random distance between two events or pair of particles, is 

given by means of the ‘transformation’

point d  s(X i,Y i,Zi).

(5.7)

where |d | =  d and, putting this into the context of the previous section and for the ra­

il — I Pi(d)dd =  P c (d0, dm) (5.8)

2in molecular modelling this is known as the canonical ensemble



where u =  U (0 ,1) is a random number uniformly distributed in the range [0,1] and dQ is 

the lower limit of the range over which d is defined. Note that Pc(dOJ dm) is in effect the 

cumulative probability distribution.

Since the issue here is how far a photon will travel before being scattered, the proba­

bility that a photon travels an optical depth d without interaction is exp(—d). Probability 

of scattering prior to d is Pc (d) =  1 — exp(—d), therefore sampling from the cumulative 

probability according to u =  1 — exp(—d), gives

d — —log( 1 — u ) (5.9)

and as a result dm can now be calculated from Equation 5.8.

However the latter is not an easy task particularly if one wishes to examine particles 

of no spherical symmetry, as is the case with ellipsoids. It has been noted that most of the 

computational time taken from this algorithmic process is due to this computation [122]. 

The complexity increases exponentially with the number of scattering events or number 

of particles to be simulated. We have adopted a treatment where the particle’s surrounding 

volume is a sphere with the radius being that of the ellipsoid’s largest linear dimension. 

Since we do not wish to examine the process of aggregation, we seek (d, dm) such that 

each successive pair of ellipsoids does not collide or form any binding linear chain, fractal 

or otherwise structure. Hence they would be very close to one another (agglomerates) so 

that, depending on numbers of cells in the volume, dQ <  A but do not form aggregates. 

The latter implies that the case where d —*• 0 is not examined. As a result we wish to find a 

Pair Distribution Function, by which Pr(d, dm) is calculated so that by assuming a range 

(0, P rmax) and a range d E (dOJ dmax), then we take a sample from a uniform distribution 

for both ranges and use a rejection criteria: if Pr(d) > Pc(L) then we reject the specific 

value of d and repeat the procedure [123].

In our implementation, we assume that the largest linear dimension is sampled from 

the size distribution of Chapter 4, Section 4.4 in Equations 4.41 and 4.42 for every itera­

tion in which the size of the linear dimension of the ellipsoid is defined when calculating 

a value for d between pairs of scattering events. The total volume of the solvent, that is to 

say the cuvette’s volume, is 1 ml, and the total volume of all the bounding spheres of the 

ellipsoids is denoted by Vtotai <  1- With reference to Figure 5.2, we see that for the j-th  

scattering particle

dj,j+1 =  \J (x j+i ^ j )2 4" (2/7+1 i/7)2 (zj+1 zj ) 2 (Rj Rj+1) (5.10)
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B oundaries o f  e llip so id  
w ith center at point Oj(xr y,, z) 
and largest linear d im ension Rf

Figure 5.2: Calculating the separation djj+i between a successive pair of ellipsoids 
placed at points Oj(Xj, Yj, Zj) and Oj+i (Xj+1, Yj+i, Zj+1), enclosed within spherical 
boundaries of corresponding radii Rj and Rj+i. The radii correspond to the largest linear 
dimension of the ellipsoids.
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and the decision procedure [124] will follow the criterion:

j  i f  Pr(djJ+ i) >  Pc(L), reject d. j j+1 and either Rj or R j+±;

[ i f  Pr(djj+ i) <  Pc(L), accept and move to next event.

If the separation between events is accepted then a random orientation for the ( j  + 1 )- 

th ellipsoidal particle is assigned with respect to the local coordinate system. The advan­

tage of this method is that it applies for any unknown probability distribution if we know 

its peak value or where this maximum will occur. By selecting a maximum displace­

ment (d0/ L ) between two successive events this problem can be solved. It should also 

be evident that the procedure we describe resembles the Monte Carlo method where the 

pairwise interactions between events are described [120] as a sum of occurrences of the 

complete set of positions and orientations (d j , dj+1) of the stochastic process $(dj, dj+1). 

This process follows the conditions of a discrete Markov Chain’s evolution, and as such 

if an exponentially decreasing distribution for d is found then the ensemble is a homoge­

neous one, since it is a limiting case of the transition matrix of the Markov Chain state 

evolution. Hence the stochastic process $ (d j ,d j+1) evolves as a Monte Carlo Markov 

Chain process if it resembles a distribution such that from a maxima it eventually reaches 

a minima, that is to say, the steady state.

For example, for easing the visualisation of particles distributed in the three dimen­

sional space of our volume, let N 0 =  40 and a maximum displacement between each 

of these 40 particles be 0.25mm. By generating the points for the scattering events we 

have the result at the top of Figure 5.3. By determining the accepted distances d; between 

successive pairs of spherical boundaries and selecting random orientation for the event 

(i -1- 1) and for all ellipsoids thereafter, we can now generate the visualisation of their 

placement in the volume, as indicated at the bottom of Figure 5.3. However, if we need 

to examine light scattered from the ensemble we need to be able to select a number of 

new orientations for each photon packet. In our implementation we achieve this by forc­

ing the algorithm to assume new orientation angles but for the same point clouds. Due 

to our treatment of ellipsoids covering a spherical volume of their largest linear dimen­

sion, collisions between them is avoided. Such a new random orientation is provided in 

Figure 5.3[bottom left], where we still deploy the 40 scattering events of the point cloud 

shown in Figure 5.3[bottom right]. Increasing the number of scattering events by 10, and 

using the same parameters, the point cloud will become denser and the pair occurrence 

condition of the separation between the ellipsoids will become much more difficult to 

accept as a successful separation candidate. The problem can be seen in the function 

of occurrences for the pair distribution ratio (d /L) of Figure 5.4. This effect is even
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Simulation o f 40 scattering events
(point cloud)

o.e

0.6

N
0.4

0.2

0.8
0.8

0.6 0.40.4
0.20.2 0

.Sim ulation for 40  scattering particles 
(ellipsoids a t random orientation)

S im ulation for 40  scattering particles 
(different orientation and view point)

Figure 5.3: Assuming an ensemble of 40 scattering particles with maximum separation 
0.25 mm. Note that we have assumed prolate spheroids where c = s and a = b = ts, 
with the axial ratio t being a real number uniformly distributed in the range (0.1,12). The 
sizes s for the spheroids in the illustrations at the bottom, have been overemphasized by a 
factor 10 so as to be visible. We illustrate for different orientation randomly selected, for 
the 40 scattering particles.
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50 scattering events 
(point cloud)

0.9

0.8

0.7

0.6

0.5
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0.3
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0.1,

0.80.8
0.60.6
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1.5

1

0.5
1.6 1.8 2.21.2 1.4 21

d /L

Figure 5.4: An ensemble of 50 scattering particles with maximum separation 0.25 mm. 
The point cloud is indicated at the top whilst the Pair Occurrence distribution function of 
d /L  is provided at the bottom.
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2.2

gO

2.2

d / L

Figure 5.5: Pair Occurrence distribution function of d /L  for an ensemble of 100 scattering 
particles. Note that in contrast to the function with 50 particles (Figure 5.4) it tends 
towards resembling an exponentially decreasing function.

more pronounced (Figure 5.5) where the number of scatterers in the ensemble doubles to 

N 0 = 100, resembling the negative exponential function reported earlier.

Using the decision criteria for acceptance of pair separations, leads to a stochastic 

process with a function which is exponentially decreasing as N 0 increases, for a ratio of d 

over the mean free pathlength L. This is compatible with a homogeneous distribution of 

particles, and hence illustrates the validity of this approach.

5.3 A procedure for calculating the intensity profile

As we have explained in the previous section, we consider three dimensional environ­

ments consisting of a light source and biological cells within a total volume. The basic 

form of the algorithm that we employed for the stochastic simulation of photon transfer 

is as follows.

Step I Decide on the total number of photons to be injected

Step II Decide on the wavelength and number of photons in a packet to be injected from 

the source, depending on the environment

Step III  For each photon repeat steps 1 to 5:

1. Assign wavelength and update intensity, following the source specification
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2. Choose initial position

3. Increment count of emission

4. Update intensity profile

5. Repeat steps (a) and (b) until the last scattering event

(a) find nearest surface along the photon path

(b) If a cell is found along the photon’s path:

i. determine outgoing intensity

ii. assign scattering direction

6. Store outgoing photon’s direction (polar angles)

Step IV Calculate normalised intensity.

For an ensemble of N 0 particles within this total volume we assume that the transfer 

of radiation from the light source will be from below. That is to say, photon packets are 

injected from the origin such that the intensity at any direction of emission of the source 

is isotropic. For each photon the initial position (Step III.2) is the origin and the direction 

cosines of the photon are known to be

kijX =  sin 9 cos (j) kiiV =  sin 9 sin (j) k^z =  cos 9 (5.11)

and all subsequent photons will follow a direction where we will be considering the case 

where injection of photons is taking place only in an upward direction. The basic assump­

tions made in the simulation algorithm are:

1. Source (emitter): The laser light source is a ‘generator’ of photons, which are as­

signed an initial position on the emitter’s surface. The emission strength is uniform 

over the emitter’s surface: photons are generated uniformly over the surface.

2. Environment: The environment is assumed to be distilled water illuminated by a 

source in the visible spectrum (refractive index 1.336). The water environment does 

not interact with the photons emitted and subsequently scattered.

3. Scattering events: Photons will only be scattered and not absorbed when they 

contact a bacterial surface. The scattering surfaces are described by the three- 

dimensional mathematical relationship and its orientation with respect to a global 

coordinate system. The global coordinate system is defined to be that of the source.
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4. Scattering Objects: These are the ellipsoidal surfaces which model the bacterial 

cells. The optical properties depend on the internal structure, that is to say, the 

number of layers employed.

However, it is a reasonable assumption that the particle’s ellipsoidal shape affects the 

polarisation properties and scattered intensity. As we have seen in Chapter 4 for single 

particles, the intensity profile is affected by the curvature and orientation in particular. 

Furthermore the number of'layers that the ensemble’s particles will have may have a 

significant effect upon the scattering angle selection (Step III.5.b.ii). That is to say, since 

we are interested in the multiple scattering of non-aggregating species of bacteria, the 

phase function would in theory affect the way scattered light will be distributed as it 

passes through each scattering particle. Furthermore, we assume that the medium in the 

environment (water) does not interact with the photons and that the bacterial cells are 

described by their bounding surfaces (ellipsoids), and the associated optical properties.

The dependence of the optical properties on a bacterial ensemble that violates the rule 

d i- i fi <  A is investigated by studying the effect that these properties have on the scattering 

field. For each scattering event, within the densely but homogeneously distributed packed 

media, the Rayleigh-Debye phase function would be applied, and is provided in [101, pp 

22-24].

F (9) =  C (k0)[V(m  -  1)]2|P ||S (0 , cj>)|2 (5.12)

where V  is the volume and m the relative refractive index of the scattering particle re­

spectively. C (k0) is a constant depending on the propagation constant’s (kQ) behaviour 

with wavelength A and magnitude of polarisation |P |. The expression for the scatter­

ing amplitude S is the one that we have derived in Chapter 4 for ellipsoidal geometries 

with an arbitrary number of layers (Equations 4.24 to 4.26) and by using the treatment of 

Section 4.3 for spheroidal shapes of a randomly chosen axial ratio.

However, in Equation 5.12, it is once again assumed that the transparency of the par­

ticle m  —> 1 holds true and that the particles producing the scattering amplitude are 

homogeneous. Following the treatment from previous Chapters, we have shown that for 

an n-layered particle the average weighted polarisability of the scattering cell has to be 

taken into account defined as

* = ° -  <5-i3 >

As such Equation 5.12 becomes
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F (0 ,^ ) =  C(fc<,)a2|P ||S (0 ,^ ) |2 (5.14)

This modification of the phase function makes it possible to examine scattering from 

n-layered bacterial cells, depending on the derived amplitude function used, for the pre­

viously examined geometrical shapes.

In our simulations (in particular Step III.5.b) the azimuth angle 0* at the z-th scattering

that 4>i =  27rU(0,1), whilst the zenith angle 0* at the z-th scattering event is generated as a 

random real number distributed in the interval [0, it] but using the transformation defined 

as [125, p.22]

where u  and <f> are sampled as a random real number distributed uniformly so that u — 

U (0 ,1) and 0 =  2ttU(0, 1).

The polarisation vector P  is assumed to undertake a sequence of rotations, as a di­

rect consequence of the scattering events. When the last scattered wave with polarisation 

P m_i is incident to the N 0-th particle, the polarisation P No radiated from the N 0-th parti­

cle will be. given by

where k s>m is a vector notation of the direction cosine of k S)Tn defined in the absolute 

(global) coordinate system. This can be given in a form of a rotation matrix [102], and as 

such Equation 5.16 will become

where for the N 0 event the direction cosine for the X-axis of the global coordinate system 

is k(s,N0),x and similarly for the global Y -  and Z -axes.

In a similar fashion, we assume that the incident wave vector k* has a polarisation P* 

and to undergo successive scattering events at least once from its particle, with the last

event is generated as a random number distributed uniformly in the interval [0,27r] such

P No ~  ~ k s ,N0 X ( k S)AT0 X P jV o -l) (5.16)

l-^8 ,N o),X ^stNo),Z -^(s,No),Y^(s,No),Z “  ^(S,N0),Z

where the relation between the direction cosines [103] is such that

(5.18)
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particle labelled as N 0, would mean that a multiplicative effect would take place so that 

the final polarisation vector P  from all N 0 scattering processes would be obtained from

P W<J=  n  R j ( X , Y , Z ) P 1 (5.19)
j = N 0

where R (A , Y , Z ) is the rotation matrix of Equation 5.17. In our simulation, the direction 

and polarisation of the scattered wave at each event are determined in the scattering coor­

dinate system. However, for simplicity, the product of the rotation matrices is calculated 

with respect to the global coordinate system so as to reduce the time required for relating 

the different local coordinate systems per scattering particle.

Every time a new photon is injected from the origin (Step III), our simulation pro­

cedure issues a new orientation for a proportion of ellipsoids, as soon as it finishes its 

travelling path from the ensemble and exits the total volume of the cuvette (note that in 

our simulations Vtotai = 1 ml). Hence the effect we achieve is an average over several 

orientations. However, when a photon exits the ensemble it has to be placed in a memory 

matrix with its intensity value and the direction of travel (Step III.6). This is because 

we are trying to acquire the intensity of the ensemble in the total volume using discrete 

events, including the exit of a photon. This is equivalent to sampling from a continu­

ous intensity distribution and we infer the intensity profile by producing histograms of its 

function. For fully three dimensional systems we need to inject (Step I and II) and store 

(Step III.6) many photons, in the region of 105 or more. As is noted by Walker [126], for 

an algorithmic procedure of the kind we describe here, convergence of pair separation in 

conjunction with tabulation of scattering angles requires 106 histories for acquisition of 

an intensity profile at [0,40°] degrees whilst for [0,90°] the number of photons emitted 

must be at least 108. As a result, the computational power needed increases rapidly be­

cause of the number of random events and calculations that need to be performed within 

the ensemble3. As a result, we assume that each </> direction exit is equally probable and 

we only compute the intensity over 0 in the range [0,2ir]. As is customary in all Monte 

Carlo Markov Chain radiative transfer codes, we normalise the intensity so that

r  HP) I(Q)I  = ---------------- — --------------- = ------- — -----  (5 20)
lim0_>o 1 (0 ) -  limfl-^ 1(9) I  max Imin

and we report our results so that scattering in Figure 5.6 has two curves per experiment 

with each different number of layers, i.e. for the scattering angle in [n, 2 ir] and another 

curve for [0, tt]. Experiments with different number of layers are denoted by curves that

3If the worst case performance is © (A 3) for computation time then the best case scenario for time 
needed to store results is Q(N%).
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have successively changing lines from solid line to dashed, double dashed and so on, 

depending on the number of layers. It will become evident that asymmetry in the intensity 

profile is apparent and there is no need for extra visualization aids.

In Figure 5.6 we have shown results for concentrations of cells in the ensemble as 

N a =  5 x 108 (top) and N 0 — 5 0 x l 0 8 (bottom) where clearly the probability of multiple 

scattering is expected to be sufficiently high. The size distribution from which we have 

sampled a size (s ) for each of the scattering bacterial cells is the one of Figure 4.9 and 

for Kieft =  0.2, Kright =  0.1. In this simulation we assume that we have an ensemble of 

the same species of bacteria, hence for every experiment the cells have the same number 

of layers, that is for n =  2 ,3,4,5 and n  =  10. However the distribution of layers, that is 

to say their thickness, is produced by using a previously noted procedure: for spheroids 

of equal dimension on their local coordinate system a = b =  ts  and c = s where for 

the axial ratio t = U{0,1), we assume that the first layer is 0.8 of the total radius whilst 

the remainder are of uniformly distributed random thickness. A similar procedure is also 

applied for the relative refractive indices using the rule for each layer of the bacterial 

cell, mk =  1.35 — 0.344U(0,1). For an increase in the number of scattering events, the 

peak of the intensity at near forward angles decreases, whilst the depth increases. This is 

expected, since for increased concentrations the scattering intensity will decrease rapidly 

with respect to that of incidence, as we have mathematically shown in earlier chapters 

(curves have weaker features, i.e. extrema are ‘washed-out’).

However, at backscattering angles we can still observe some extrema features which 

may be smoothed out owing to the increased concentrations and multiple scattering, but 

they are evident up to a limit of ensembles with no more than 5 layers. For additional 

layers the intensity patterns become featureless, predicting that for example if 10 layers 

are deployed then the scattering pattern becomes almost flat, with features appearing only 

in near-forward directions (0,30°) and (330°, 360°). This illustrates that if one is to use 

our generalised approximation for densely packed media, then the applicability of our 

model has a limit of no more than 5 layers, assuming an ensemble where all bacteria are 

of the same species. Within this limit, inference of optical properties is possible.

As we have noted earlier, every time a photon exits the total scattering volume, a new 

orientation is assigned for the particles. Hence averaging over all orientations is achieved 

for the intensity profile. However, note that for the polar patterns for the same number of 

layers, that is to say for patterns from (0,180°) and (180°, 360°) shown by the same line 

style in Figure 5.6. Even though for the same number of layers the magnitude is of the 

same order, there is an apparent polar asymmetry. Therefore, the orientation effects of the
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Figure 5.6: Results for the normalised scattered intensity profile as a continuous function 
approximated from discrete scattering exit events. We have assumed 109 injected photons 
and spheroidal geometry for the bacterial cells. We illustrate results for N a = .5  x 108 at 
the top and 7V0 =  50 x 108 at the bottom. The ensemble has particles of the same number 
(n ) of layers internal structure; namely n =  2 ,3,4,5 and n =  10 indicated by successive 
lines from solid to increased dotted lines.
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spheroidal modelled bacteria seems to be of interest even for high concentrations. Clearly 

characterisation by means of geometry of the cells is still possible. This finding is in 

agreement with our finding of Chapter 4, and for asymmetric polar patterns of geometries 

where the axis of symmetry is less likely to be normal to the incident wave vector. Hence 

we postulate that for such geometries the curvature faced upon incidence and orientation 

has a significant effect on multiple scattering. Up to a limit of 5 layers in all scattering 

particles (i.e. for the same species), this asymmetrical scattering intensity profile would 

be explored as a possible means of partial identification.

Finally, the width and depth of the intensity cone depends on the distance travelled 

from the origin to the exit points. We have assumed, in our models for the scattering 

amplitude, observations in the far field of the exit point of the plane of 6 from the random 

medium. Increasing the number of layers means that, effectively, there are additional 

shifts within the particle’s layers and so the intensity decreases with relation to the mean 

free pathlength L travelled between scattering events. Unfortunately, due to the fact that 

the process is stochastic and for each injection of a photon different scattering angles for 

each particle are selected, we cannot provide a detailed analysis of this relationship and 

we only report its effect. That is to say, a reduction of the intensity is not only due to 

number of layers employed but also due to the effect the mean free pathlength has on the 

intensity.

5.4 Conclusion

In this Chapter we have described mathematically the problem of light scattering in 

densely occupied media. This is done with particular reference to bacteria in water, hence 

fulfilling the conditions outlined in Chapter 2. A modelling procedure satisfying these 

conditions has been provided. Since there is no exact solution to the problem of multiple 

scattering we have outlined a stochastic procedure for calculating positions of bacteria in 

a 1ml volume where no binding of cells is expected. To achieve this we have constructed a 

decision rule with particular reference to ellipsoidal geometries, where the spatial volume 

occupied by these micro-metre particles is that of a sphere. That is to say, their volume is 

considered to be the one constructed for the ellipsoid’s largest linear dimension enclosed 

within a sphere of this radius. Hence collision effects are avoided, and there is no binding 

between particles. This is a minor contribution: the implementation and visualisation of 

the dense scattering ensembles (Annex D).

The main contribution of this Chapter is our modification of the phase function for
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densely packed media. That is to say, using our reasoning method from previous chapters, 

we have extended this function to apply for relative refractive indices of at least m  < 1.35, 

as opposed to m  —> 1, by incorporating the average polarisability contribution of the 

cell and for n-layers. Hence applications of the methods in Chapters 3 and 4 have been 

rendered possible; that is to say the ensemble’s scattering amplitude is considered to be 

the one outlined in the mathematical expressions for our generalised Rayleigh-Debye 

approximation and is applied in every scattering event.

This leads us to a major finding: as noted in Chapter 4, asymmetry in the scattering 

intensity’s profile due to orientation and curvature effects is evident, even for this densely 

populated medium. Hence we propose that, at least theoretically, the asymmetric po­

lar pattern is evident even after the apparent ‘wash-out’ of distinct features in the light 

scattering pattern of angular dependence due to increased concentrations. The latter also 

happens with increasing number of layers employed for each collection of particles in 

the simulation. This also causes a decrease in the magnitude of the intensity, hence lim­

iting the number of layers that one would use. We suggest that at most 5 layers can be 

used, enough for characterisation of the bacterium in such media, due to this amplitude 

decrease.

We have illustrated that, even in high concentrations, it is possible to use the math­

ematical models, in effect our generalised Rayleigh-Debye approximation, and to infer 

the optical properties by inference on at most 5 layers. This can be thought of as an­

other minor contribution, since we postulate a departure from the common experimental 

belief that deploying more than 2 layers in closely packed media does not advance our 

understanding of the internal composition of the cell.
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Chapter 6 

Conclusions and further development

The general problem that we have investigated within this thesis can be said to be the 

modelling of the true physical meaning of the internal composition of bacteria, in terms 

of scattering in all directions through mathematical simulation, with both deterministic 

and stochastic elements. Forward scattering has been investigated and seems to offer no 

contribution towards identification. A similar argument exists for exploration of patterns 

resulting from different concentrations or from volumetric inference. That is to say, by 

simply inferring sizes of bacteria, since too many of them present the same volume, then 

it is not impossible to produce a characterisation or partial identification protocol [27]. 

Therefore, our research has focused on models that may provide inference of a number of 

features that have a physical standing; namely the internal structure. As follows from the 

literature, scattering patterns of angular dependence reveal simplistic internal structures 

and it is reasonable to assume that following this line of research would lead at least to 

partial identification.

However, as we have seen in Chapter 2, few studies for bacteria appear where the bac­

terium is examined as a strongly inhomogeneous particle. Furthermore, limiting cases 

have been theoretically examined, mainly due to the lack of inhomogeneous models 

within the near-index regime. The commonly used models explore the idea that the bio­

logical cell has a limited number of layers. In our work we propose that the bacterial cell 

must be investigated as an n-layer structure by generalising and extending a modification 

of the Rayleigh-Debye or Bom approximation applicable in the near-index regime, as is 

the case with bacteria in water based environments.
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6.1 Conclusions

In Chapter 2 we have introduced the physiology and biological processes (drinking water 

ecosystems) in relation to examination of bacteriological content in water based media 

via light scattering. With this in mind we have also introduced the underlying theory 

and instrumentation available. It was apparent in the literature that the bacterial cell has a 

refractive index close to that of water. As a result they can be modelled as near-index cells 

where absorption can be considered to be negligible. The sizes for bacteria are indeed 

diverse, but for drinking water, they can be considered to be from approximately 1/im to 

4/im. However, solutions in the near-index regime seem not to accommodate these sizes, 

even though they have been applied in conjunction with light scattering equipment. That 

is to say, have been successfully applied on the homogeneous model and the simplistic 

2-layer model (cytoplasm / cell wall for bacteria or cortex / protoplast for spores). As 

such, these models can be said to be limiting and have to be extended to incorporate 

at least most of the dominant features of the cell. Furthermore the spherical models or 

spherical equivalents do not incorporate physical justification of inferred properties and 

do not explore the effect of non-sphericity on the scattering patterns.

Following the drinking water ecosystem paradigm we have also found that in the 

literature there is a call for further examination of the size distributions for modelling 

populations which must incorporate skewness measures. Another research question is 

the effect that densely packed media would have on the scattering pattern and how many 

layers would in theory be applied. Regarding the populations of cells, there exist cases 

where ambiguous results from light scattering models indicate the need for extension of 

any mathematical solution to other characteristic external morphologies, as in the case of 

ellipsoidal particles. This case is particularly evident for spores and coliforms. Finally 

the assumption of transparency of the particle has to be re-evaluated if one wishes to 

extend the applicability boundaries of near-index models; incorporation of the average 

polarisability of the cell within a proposed model would lead to a better understanding of 

contributions of the internal structure to light scattering.

In Chapter 3 we have analysed and derived a model for bacteria that can be characterised 

as spherical near-index small particles. In that sense we proposed that the cell has to 

be modelled as an n-layer spherical structure so as to include the contributions arising 

from all parts of the cell, in agreement with findings on internal structure from electron 

microscopy.

The first contribution is our implementation of the computer algorithm for the n-layer
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exact solution. From there a major finding is the theoretical verification that, for spheres, 

patterns of light scattering are symmetric along the scattering angle, irrespective of the 

number of layers deployed for the internal structure. However for patterns where the 

wavelength is variable, then within the visible spectrum there seems to be enough infor­

mation to render possible inference of multiple layers and corresponding optical proper­

ties. The implementation of this solution could prove to be an important tool used as a 

virtual experimental laboratory, as not many computer programs are generally available 

even though many solutions to the problem have been published. We have used the Matlab 

technical computing language to do so, and ever since its publication many researchers 

have either enquired or have been using our code.

The second and major contribution of Chapter 3 is the generalised solution to the n- 

layer near index problem based on modification to the Rayleigh-Debye approximation. 

Due to the absence of experimental data, we have verified that, at backscattering angles, 

the popular models of 2-layer Mie and Rayleigh-Debye, our solution, the generalised ap­

proximation, behaves much closer to the exact solution compared to the model without a 

modification. Unfortunately, at forward scattering our model does not yield good results 

and causes the relative difference from the exact solution to increase since there is a dif­

ference of at least 2 orders of magnitude. From the implementation of the n-layer exact 

solution we have established the limits of our generalised approximation. Hence our third 

contribution, the generalised Rayleigh-Debye spherical model, with respect to the rela­

tive refractive index, covers a significant part of the bacteria domain. Finally, our fourth 

contribution was an attempt to improve the condition for the relative refractive index from 

\m  — 1| <C 1 to \m  — 1| <  1 and to incorporate the average weighted polarisability term. 

It was found that, irrespective of the number of layers we deploy, our mathematical model 

presents a 19% relative difference from the exact solution when the range of values for 

the relative refractive index is up to approximately 1.3. This is the reason for our claim 

that it covers almost the total region of bacteria, since we have already seen in Chapter 2 

that most reported values do not exceed the 1.2 limit. Furthermore it is expected that for 

smaller ranges this relative difference will decrease.

A major finding from this relative difference study shows that the belief that modifying 

the Rayleigh-Debye approximation will result in a relative difference close to 10% is 

not true. In fact we have illustrated, by employing multiple layers, that the generalised 

approximation which is an extended version of the Rayleigh-Debye modification differs 

from Mie scattering by approximately 20%. However, another significant finding is that, 

for our model, the generalised Rayleigh-Debye, this may be true but for increased m  and r
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values. It has been apparent that our model is inferior to the exact solution not necessarily 

because of increased m  values but for consequent increases of size. This validates our 

earlier claim that smaller values of relative refractive index do appear to decrease the 

relative difference.

In Chapter 4 we have derived a new model for the ellipsoid and the subcase of spheroids as 

an n-layered structure. Hence we have provided a contribution in terms of an extension to 

our generalised near-index approximation from spheres to ellipsoidal geometrical shapes. 

This contribution is the new method for determining the scattering amplitude or the form 

factor from particles of no apparent spherical symmetry, as in the case of ellipsoids, and 

for multi-layered internal structures. This is a significant finding if one considers that, 

for example, coliforms have been so far modelled as homogeneous bodies and examined 

using polar patterns of scattering. With our model a new line of research may be opened 

where the experimental data can now be used for inference of n  relative refractive indices.

We have provided a modelling procedure for the population of bacterial cells and 

through this procedure we illustrate in particular that backscattering effects may lead to 

real-time characterisation of the internal structure of a bacterium in water. Hence, a con­

tribution that can be said to stem from this Chapter is the new procedure for treating 

populations of cells that exhibit skewed frequencies of their linear dimension, as long as 

the condition of independent scattering is satisfied. Hence, this procedure provides the 

possibility of having samples directly examined before any calibration takes place, by 

simply selecting only 2 parameters and the expected size average.

A major finding which can be derived from simulation of our mathematical solution 

is the theoretical justification that differential scattering patterns are heavily dependent 

upon orientation and the surface that the incident beam will illuminate. We have found 

that both the azimuthal and the polar angle (6, <j>) in an assumed laboratory Cartesian axis 

system are important. This finding illustrates that since in the three dimensional sense 

better results may be obtained, a justification for use of instruments that acquire a three- 

dimensional pattern is provided.

Overall we emphasise that back scattering will play an important role in the charac­

terisation of such particles, even in the case where some axis of symmetry is apparent. As 

a result, our final contribution in this Chapter is the realisation that the ratio of particular 

scattering amplitude elements and angular changes at back scattering, may be sufficient 

for immediately being able to identify how many layers there may be within a sample of 

bacteria. Thus an extra feature towards partial identification has also been offered.

In Chapter 5 we have described mathematically the problem of light scattering in densely
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occupied media. This is done with particular reference to bacteria in water, hence fulfill­

ing the conditions outlined in Chapter 2. A modelling procedure satisfying the previously 

outlined conditions has been provided.

Since there is no exact solution to the problem of multiple scattering we have outlined 

a stochastic procedure resembling the Monte Carlo Markov Chain simulation. A minor 

contribution that stems from this chapter is this very procedure, implementation and visu­

alisation of the dense scattering ensembles, which can be applied to any geometry. This 

is due to the fact that we have constructed a decision rule, with particular reference to 

bacteria of ellipsoidal geometry in a 1ml volume where no binding of cells is expected 

but the distance between them is small enough to increase the probability of multiple 

scattering. To achieve this, the spatial volume occupied by these micro-meter particles is 

that of a sphere. That is to say, their volume is considered to be the one constructed for 

the ellipsoid’s largest linear dimension enclosed within a sphere of given radius. Hence 

collision effects and binding of cells (aggregates) has not been examined.

A major contribution of Chapter 5 is our modification of the phase function for densely 

packed media and our treatment of multiple scattering within our procedure. That is to 

say, using our approach from Chapters 3 and 4, we have extended this function to apply for 

relative refractive indices of at least m  < 1.35, as opposed to m  —> 1, by incorporating the 

average polarisability contribution of the cell for n  layers. This has allowed the methods 

in Chapters 3 and 4 to be used; that is to say the ensemble’s scattering amplitude is 

considered to be the one outlined in the mathematical expressions for our generalised 

Rayleigh-Debye approximation and is applied in every scattering event.

This leads to a major finding: as noted in Chapter 4, asymmetry in the scattering in­

tensity’s profile due to orientation and curvature effects is evident, even for this dense 

medium where multiple scattering has a high probability of occurrence. Hence we pro­

pose that, at least theoretically, the asymmetric polar pattern is evident even after the ap­

parent ‘wash-out’ of distinct features in the light scattering pattern of angular dependence 

due to increased concentrations. The latter is also evident when the number of layers em­

ployed for each collection of particles in the ensemble is increased. The latter also causes 

a decrease in the magnitude of the intensity, hence limiting the number of layers that one 

would use to at most 5. However, even for this limit, and due to our prior knowledge 

for the cell, it is evident that characterisation in such media, is possible. Hence, we have 

provided an extended tool, enhancing the simplistic models of 2 or 3 layers.

Hence, we have illustrated that, even in higher concentrations where smaller separa­

tion of pairs takes place, it is possible to use the mathematical models (i.e. generalised
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Rayleigh-Debye approximation) and to infer the optical properties by employing at most 

5 layers. This signals the final contribution within our work, since we postulate a depar­

ture from the common experimental belief that using algorithms that deploy more than 2 

layers in closely packed media does not advance our understanding of the internal com­

position of the cell.

To summarise: applying our models as proposed within, that is to a spherical, el­

lipsoidal or spheroidal geometrical shape with an arbitrary number of layers, one would 

first explore the effect of altering the parameters of size overall (s) and per layer (Si), 

investigating values for the relative refractive index (ra*, i = 1 , 2 , . . . ,  n) and then infer, 

using some test statistic, the best model which may lead to partial identification. To the 

best of our knowledge we are the first to theoretically examine the cell as a small particle 

of n-layer structure and to propose such a mathematical extension within the near-index 

boundaries (m < 1.35), at the far-field observation points at distance R  (where R  s).

6.2 Further development

The work described in this Thesis has led to mathematical models for the spherical and 

ellipsoidal bacterial cell or spore and for populations of bacteria that satisfy or violate 

the independent scattering condition. Most of the mathematical work that would follow 

should be within the area of implementing a solution for comma-shaped particles, parti­

cles with spherical and/or ellipsoidal inclusions and incorporation of hybrid cores.

That is to say, one would in theory apply the ellipsoidal model that we have provided, 

and try to solve the problem where the catenary curve is fitted within the kernel of the 

phase shift, and for the n-layered cell. Hence, in three dimensional space and using the 

treatment we have illustrated within, we use the equation

X
y = a cosh -  

a

to infer the phase shift Sy over y  and by inferring a relationship between this curved ellip­

soid over the rr-axis, we take infinitesimal cross sections where their plane is parallel to 

the 2-axis and normal to the x y  plane. This is not a trivial problem since angular relation­

ships have to be established between the catenary curve and the X  and Y  axis, as well as 

with respect to the arbitrary angle of incidence. It may be the case that the problem has 

no analytic solution, as with the indefinite integral of the super ellipse problem (Section 

4.5).

In terms of spherical or ellipsoidal spore inclusions, one would have to calculate from
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an integral of the form

ik3
Sspore = 2^OiP(0, (f>) exp(jC)

where P (9 , <j>) is the proper amplitude form factor corresponding to the structure of the 

spore with reference to a local coordinate system with origin at distance C  from its centre. 

Again a procedure has to be constructed so as to incorporate non-symmetrically placed 

n-layers for both the spore inclusion and the host cell. The procedure is deemed to have 

no analytical solution for modelling multiple inclusions.

However, one would use a hybrid model, namely an n-layered structure for all parts 

of the cell using the generalised approximation except for the core, which would be mod­

elled as an ensemble of Discrete Dipoles of different properties. In that sense the internal 

part would model multiple inclusions that have different optical properties and arbitrary 

shape. The reader is warned that this procedure may provide difficulties when trying to 

understanding the physical meaning of the cell and its contributions to scattered light. 

Furthermore, it may prove difficult to keep the computational time required within rea­

sonable limits. It is almost certain that rapid convergence cannot be established.

Another extension of this work may be the stochastic modelling of ensembles that 

incorporate a time dependent property. That is to say, not to assume that within the en­

semble the particles are stationary, but that they are moving in different directions and for 

random walks, helical motion and Brownian - helical - Brownian combinations. Particular 

care has to be taken to deal with collisions. That is to say extra criteria have to be set for 

what happens in the case of collisions of two, three and higher numbers of particles at any 

given time. We note that the problem is of great biological interest. The same can be said 

for the cases where some particles form multiple aggregates at different positions, whilst 

others will continue their free movement. Simulations of this effect may shed light on the 

process of scattering with time and angular dependence. All these refinements refer to the 

stochastic simulation process that is provided in Chapter 5, and will lead towards more 

realistic models for ensembles of bacterial cells.

Most of the experimental work that should follow is to acquire light scattering patterns 

from several bacteria species and fitting these data to our generalised approximation, so 

as to infer a number of optical properties for a single cell or populations of cells. Multiple 

cultures, that is to say, the problem of having multiple species within some total volume, 

may be of particular experimental interest. By constructing some physical separation 

procedure, as is the case with size exclusion, applying our models in mixed cultures may 

be possible. Furthermore, an identification protocol may be possible. We should note that
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the production of a library of experimental (raw) data from light scattering experiments 

that would be publicly available would greatly advance the field of light scattering by 

small particles as any theory could be directly tested. To the best of our knowledge, no 

such library exists.

Developing an algorithm that infers models of 2, 3 or more layers, from (raw) light 

scattering data for the same sample of bacteria, is a fairly straightforward linear or non 

linear optimisation problem, depending on the objective function to be used. The issue 

here would be how to decide which model is the best out of a number of candidates. This 

may be another direction of research which stems from our n-layered models. We advise 

anyone interested in following this line of research, the employment of inductive learning 

techniques that incorporate statistical entropy measures, since they will be more sensitive 

to small changes in a dataset of [ri5 rrii] values. As a result, normal statistical procedures, 

as is the case with discriminant or logistic functionals and their corresponding decision 

rules, may fail to incorporate the complexity of the n-layered candidate solution space.

Finally, we have provided, for the mathematical expressions of our models, network 

graphs comprising a main function, weights and inputs to this function. It is easy to 

see that in effect one has a stochastic process of Bessel functions. Assuming that we have 

Bessel functions that take optical properties as ‘inputs’ and multiply these by the weighted 

average polarisabilities and the constant terms, then we have a process that is remarkably 

similar to the one from the neural networks literature. Consequently, by substituting the 

kernel function of a Radial Basis Artificial Neural Network with that of a Bessel function, 

and retaining the matrix of weights and corresponding input values, then a close fit of 

a light scattering pattern from a library of experimental data would be achieved. It is 

expected that the process would be performed in real time if an adaptive or feedback 

neural network is used; but now some insight on the physical meaning of the results can 

be inferred.
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Appendix A 

MATL AB Implementation of the 

n-layer Mie scattering problem

To the best of our knowledge this is the first set of Mie functions to appear, developed in 

MATLAB (version 6, release 12; ©Mathworks), that tackles the n-layer sphere problem. 

That is to say it includes functions for the calculation of the Mie coefficients an and bn, 

efficiencies of extinction, scattering and backscattering, the polarisation ratio and finally 

the angular scattering elements S n , S 12, S33 and S34. From the latter, calculation of the 

light intensity is provided as well as the degree of polarisation. An approximation of the 

absorption efficiency is also included within (i.e. Qabs ~  Qext — Qsca).

It is assumed that the magnetisation of the particle is governed by the magnetisation 

of the ambient medium, and as such the magnetic permeability between the particle and 

the medium is unchanged. Required input parameters is the vector of size parameter 

(x = kr  where k =  A being the incident wavelength and r  the radius vector).

The vector of the size parameter has n  dimensions, that is to say, as many as the number 

of layers we employ. Another input is the vector of complex relative refractive indices, 

corresponding to each of the x-vector values (implied compartments/layers), the angular 

range in radians (6 e  [0,7r]) and information about the incident light source; namely the 

state of polarisation and incident power. All input values must be expressed in the micro 

units range (e.g. fim , fiW ).
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Figure A .l: Structure of interaction between the Matlab functions: Generating Functions 
—► Main Routines —> Resulting Functions

A.l Comments on functions

In terms of the cooperation between the functions and the way they are structured, a 

generalised view can be seen in Figure A .l. The functions RBI and RB2 are generat­

ing functions to n l a y e r S c a C o e f f ;  that is to say, the calculation of the coefficients 

in the Mie series uses the Ricatti Bessel functions as shown in the corresponding code 

of Section A.2. Similarly, the Associated Legendre polynomials (function A L e g e n d r )  

are used as a generating function for the calculation of the Scattering Amplitude and the 

corresponding Scattering Elements (function nL a y e rA m p )  in conjunction with the coef­

ficients calculated in the Mie series (function n l a y e r S c a C o e f f ) .  The number of terms 

to be calculated obeys the schema described in Equation 3.14 and has been incorporated in 

n l a y e r S c a C o e f f .  As such the main routines are shown in Figure A .l to be the Mat­

lab functions n l a y e r S c a C o e f f  and nL a ye rA m p.  These main routines provide the 

results that can be produced using the Resulting Functions: n l a y e r E f  f  i c i e n c i e s ,  

D e g r e e O f P o l a r i s a t i o n  and n l a y e r l n t e n s i t y .
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A.2 Generating Functions

A.2.1 The functions RBI and RB2

% RBI the Ricatti-Bessel function of the first kindt
% RBl(rho, nmax) for the value rho from n=l to n=nmax.

function phi = RBI(rho, nmax) 

rho=rho

nst = ceil(nmax + sqrt(101+max(rho)));

phi= zeros(nst,length(rho));

phi(nst-l,:) = le-10;

for n=nst-2:-l:l
phi(n,:) = (2*n+3)*phi(n+1,:)./rho - phi(n+2,:);

end

phiO = 3*phi(1,:)./rho - phi(2,:); 

phiO = sin(rho)./phiO;

phi = p h i (1:nmax,:) .* (ones(nmax,1)*phiO);

% RB2 the Ricatti-Bessel function of the second kind
% RB2(rho, nmax) for the value rho from n=l to n=nmax.

function zeta = RB2(rho, nmax) 

rho = rho(:).';

zeta = zeros(nmax,length(rho)); 

zeta(l, :) = -cos(rho)./rho - sin(rho); 

zeta(2,:) = 3*zeta(1,:)./rho + cos(rho); 

for n=3:nmax
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zeta(n,:) = (2*n-l)*zeta(n-1,:)./rho - zeta(n-2,:);
end

A.2.2 The function ALegendr

% ALegendr the angular dependent Associated Legendre Polynomials 
% [p,t]=ALegendr(ang, nmax)
% produces matrices p and t with rows n=l to n=nmax
% for pi and tau functions rescpectively.

function [p,t] = ALegendr(ang, nmax)

p(l,:) = ones(1,size(ang,2));

t (1, :) = cos(ang);

p(2,:) = 3*cos(ang);

t(2,:) = 2*cos(ang).* p (2,:)-3;

for n=3:nmax
p(n,:) = ((2*n-l)*cos(ang).*p(n-1,:) - n*p(n-2,:))/ (n-1); 
t(n,:) = n*cos(ang).*p(n,:) - (n+1)*p(n-1,:);

end

A.3
A.3.1

%
%
%
%

%

function S = nlayerAmp(m, x, ang)

if length(x)==l
x = x*ones(size(m)); 

end if length(m)==l
m = m*ones(size(x));

end
% criteria for number of terms in Mie Series

Main Routines 
The function nLayerAmp

Scattering Amplitute Elements of scattered light. 
nlayerAmp(m,x,Io,ang) returns the scattered Light for 
a sphere, size x, refractive index relative to medium m 
at angle ang.
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% (Number of coefficients nlayerScaCoeff to be calculated)
% Wiscombe(1980), Applied Optics, 19(9), 1505
nc = ceil(max(x)+4.05*(max(x)“ (1/3))+2); n=(l:nc).';

E = ((2*nc+l)/ (nc*(nc+1))); [p,t] = ALegendr(ang,nc); W = warning; 
warning off [a,b] = nlayerScaCoeff(m,x,nc);
% Check for invalid (NaN) results due to too many terms in 
% relatively small particles.
invalid = find(any(isnan([a;b]))); while "isempty(invalid) 

a (:,invalid) = 0; 
b (:,invalid) = 0;
nc2 = ceil(max(x(invalid))+4.05*(max(x(invalid))“ (1/3))+2);
[A,B] = nlayerScaCoeff(m(invalid),x(invalid), nc2);
a (1:nc2,invalid) = A;
b (1:nc2,invalid) = B;
invalid = find(any(isnan([a;b])));
% remove invalidity of zero m or x 
% these _should_ return NaN! 
if length(x)>=max(invalid)

invalid = invalid(x(invalid)-=0) ; 
else

if x==0
invalid = [];

end
end
if length(m)>=max(invalid)

invalid = invalid(m(invalid)_=0); 
else

if m==0
invalid = [];

end
end

end warning(W); 

a = a.*E; b = b.*E;

% The scattering amplitute functions 
SI = a.'*p + b.'*t; S2 = a.'*t + b.'*p;

% The scattering matrix elements (Mueller Matrix)

511 = ((S2 . *con j (S2)) + (SI. *con j (SI)) ) /2;

512 = ( (S2.*conj(S2))-(Sl.*conj(SI)) )/2;
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533 = ( (Sl.*conj(S2)) + (S2.*conj(SI)))/2;

534 = i * ((SI.*conj(S2))-(S2.*conj (SI)))/2;

S = [Sll; S12; S33; S34];

A.3.2 The function nlayerScaCoeff

% Perform calculation of the Scattering Coefficients (Mie Series)
% for the n-layered sphere. Max number of Coeff denoted by nmax 
%

% [a_n,b_n] = nlayerScaCoeff(m,x,nmax,nlayers);
% x is the vector of size parameter (k.*radius) per compartment relating to
% the vector of relative refractive indices m function

[a_n,b_n] = nlayerScaCoeff(m,x,nmax,nlayers)

m = m(:).'; x = x(:).'; nlayers = length(x); if length(x)==l 
x = x*ones(size(m)); 

end if length(m)>l & length(x)"=length(m)
error('Dimensions of x & m must be the same or scalar') 

end N = ((1:nmax).')*ones(1,length(x));

% Ricatti-Bessel functions

psi = RBI(x, nmax); psim = RBl(m.*x, nmax);

% Ricatti-Bessel function for variable m(k+l)*x(k) of k number of layers

psimKplusl = zeros(nmax,length(x)); for k = 1 : (nlayers-1) 
psimK = RBI(m(k+1)*x(k), nmax); 
psimKplusl(:,k+1) = psimK; 
k=k+l;

end correctpsimn_l = [0, sin(m(2:nlayers).* x (1:(nlayers-1)))];

% and for (n-1) series terms Ricatti-Bessel 

psimKplusln_l = [correctpsimn_l; psimKplusl(1:(nmax-1),:)];

% Ricatti-Bessel functions

kappa = RB2(x, nmax); kappam = RB2(m.*x, nmax);
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% Ricatti-Bessel function for variable m(k+l)*x(k) of k number of layers

kappamKplusl = zeros(nmax,length(x)); for k = 1: (nlayers-1) 
kappamK = RBI(m(k+1)*x(k), nmax); 
kappamKplusl(:,k+1) = kappamK; 
k=k+l;

end correctkappan_l = [0, -cos(m(2:nlayers).* x (1:(nlayers-1)))]; 
kappamKplusln_l = [correctkappan_l;kappamKplusl(1:(nmax-1),:)]; % (n-1)

% Hankel function

xi = psi - i * kappa;

% Ricatti-Bessel function for variable m(k+l)*x(k) of k number of layers 
% for (n-1) terms in series

psin_l = [sin(x);psi(1:(nmax-1),:)]; psimn_l =
[sin(m.*x);psim(l:(nmax-1),:)]; kappan_l =
[-cos(x);kappa(1:(nmax-1),:)]; kappamn_l =
[-cos(m.*x);kappam(1:(nmax-1), :) ];

% correction to avoid error in matrix/array dimensions

if length(m)>1
mm = ones(nmax,1)*m; 

end if length(x)>1
xx = ones(nmax,1)*x;

end

% Calculation of the first derivative of the nth order R - B .function

% Refer to Bohren and Huffman (1998), Wiley, pp86-87

dpsi = psin_l-N.*psi./xx; dpsim = psimn_l-N.*psim./ (mm.*xx); 
correctionA = [ones(1,nmax); (mm(:,2:nlayers).*xx(:,1:(nlayers - 
1))).']•'; dpsimKplusl = psimKplusln_l -
N.*psimKplusl./correctionA; dkappa = kappan_l-N.*kappa./xx; 
dkappam = kappamn_l-N.*kappam./ (mm.*xx); dkappamKplusl = 
kappamKplusln_l - N.*kappamKplusl./correctionA; dxi = dpsi - i * 
dkappa;

% Main routine. Reference: Volkov and Kovach(1990),
% Izvestiya Atmospheric Oceanic Physics, 26(5), 381-385

terms
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A_k = zeros(nmax,1); B_k = zeros(nmax,1);

for k = 1 : (nlayers-1)
a_k = m(k).*kappam(:,k ) .*dpsimKplusl(:,k+1) - 
m(k+1).*dkappam(:,k ) .*psimKplusl(:,k+1);

dash_a_k = m(k).*kappam(:,k ) .*dkappamKplusl(:,k+1) - 
m(k+1).*dkappam(:,k ) .*kappamKplusl(:,k+1);

b_k = m(k).*dkappam(:,k).*psimKplusl(:, k+1) - 
m(k+1).*kappam(:,k ) .*dpsimKplusl(:,k+1);

dash_b_k = m(k).*dkappam(:,k ) .*dkappamKplusl(:,k+1) - 
m(k+l).*kappam(k).*dkappamKplusl(:,k+1);

. numA_k = (m(k+1).*psimKplusl(:,k+1).*dpsim(k) - 
m(k).*dpsimKplusl(:,k+1).*psim(:,k) + A_k.*a_k);

denomA_k = (m(k+1).*kappamKplusl(:,k+1).*dpsim(:,k) - 
m(k).*dkappamKplusl(:,k+1).*psim(:,k) + A_k 
.*dash_a_k);

A_k = numA_k ./ denomA_k;

numB_k = (m(k+1).*psim(:,k ) .*dpsimKplusl(:, k+1) - 
m(k).*psimKplusl(:,k+1).*dpsim(:,k) + B_k.*b_k);

denomB_k = (m(k+1).*psim(:,k ) .*dkappamKplusl(:,k+1) - 
m(k).*dpsim(:,k).*kappamKplusl(:,k+1) + B_k 
.*dash_b_k);

B_k = numB_k ./ denomB_k;
end

NUMa_n = p s i (:,nlayers) .* (dpsim(:,nlayers) - A_k .* 
dkappam(:,nlayers)) - m(nlayers).*dpsi(:,nlayers) .*
(psim(:,nlayers) - A _ k .*kappam(:,nlayers));

DENOMa_n = x i (:,nlayers) .* (dpsim(:,nlayers) -
A_k.*dkappam(:,nlayers)) - m(nlayers).*dxi(:,nlayers) .*
(psi(:,nlayers) - A _ k .*kappam(:, nlayers));

NUMb_n = m(nlayers).*psi(:,nlayers) .* (dpsim(:,nlayers) - B_k .*
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dkappam(:,nlayers)) - dpsi(:,nlayers) . * (psim(:,nlayers) - 
B_k.*kappam(:,nlayers)) ;

DENOMb_n = m(nlayers).*xi(:,nlayers) .* (dpsim(:,nlayers) - 
B_k.*dkappam(:,nlayers)) - d x i (:,nlayers) .* (psi(:,nlayers) - 
B_k.*kappam(:,nlayers));

% the coefficients...

a_n = NUMa_n ./ DENOMa_n; b_n = NUMb_n ./ DENOMb_n;

A.4 End Result Functions
A.4.1 The Function nlayerlntensity

% I = nlayerlntensity(x, m, Io, ang, polarisation);
%
% Io is the incident light's power.
% Polarisation is an option for incident light polarisation state
% as opposed to the reference scattering plane:
% Polarisation = 0 ==> unpolarised
% Polarisation = 1 ==> perpendicular
% Polarisation = 2 ==> parallel

function I = nlayerlntensity(x, m, Io, ang, polarisation)

S = nlayerAmp(m, x, ang);

if polarisation == 0
% assuming incident light is unpolarised
I = (1/(max(x))*2) .* S (1,:) .* Io; ■

elseif polarisation == 1
% assuming incident light is polarised parallel 
% to the scattering plane
I = (1/(max(x))“2) .* (S (1,:) + S (2,:)) .* Io;

elseif polarisation == 2
% assuming incident light is polarised perpendicular 
% to the scattering plane
I = (1/(max(x))*2) .* (S (1, :) - S (2, :)) .* Io;

end
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A.4.2 The Function nlayerEfficiencies

function FO scarO extfO back.O absl = nlayerEfficiencies(m,x)

nc = ceil(max(x)+4.05*(max(x)“ (1/3))+2); [a,b] = 
nlayerScaCoeff(m,x,nc);

% scattering efficiency
O sea = (2/(max(x)“2)) .* (3:2:(2*length(a)+1) .* (abs(a).~2 +
abs(b)." 2 ) );

% extinction efficiency
% BEWARE OF THE EXTINCTION PARADOX [Bohren and Huffman 1998, pl07]
O ext = (2/(max(x)~2 ) ) . * (3:2:(2*length(a)+1) .* (real(a + b)));

% backscatter efficiency
O back = (1/(max(x)"2)) .* ((abs(sum((2*length(a)+1) .*
(-1*(length(b))) .* (a - b)))).“2);

% heuristic efficiency for radiation pressure 
% (ie the force exerted on the particle by the laser beam)
% O h pressure = O ext -
% (4/(max(x)~2 ) ) * (sum( (nc*(nc+2)/ (nc+1)) .* real(a .* conj([0 a(nc+l,:)]) +
% b .* conj([0 b(nc+l,:)])) ) + sum((2*nc+l/n*2 + nc) .* real(a.*conj(b))))

% approximate value for the absorption efficiency Q_abs
O abs = Q_ext - O sea:

A.4.3 The Function DegreeOfPolarisation

% ratioP = DegreeOfPolarisation(x, m, ang);
%
% Results in ratioP = [magP; P] where
% Polarisation ratio P and Degree of polarisation magP for the scattered light.
%
% In all cases magP <= 1 and P (0)= P (180)=0
% It is known that if

%
%

%
%

P > 0 ==> Scattered light is partially polarised parallel to the 
scattering plane
P < 0 ==> Scattered light is partially polarised perpendicular to the 
scattering plane
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%

function [P, magP] = DegreeOfPolarisation (x, m, ang);

S = nlayerAmp(m, x, ang);

% || scattered iradiance per unit incident irradiance assuming incident light polarised 
% perpendicular to the scattering plane 
% Perlrradiance = (S(l,:) + S(2,:));
% _|_ scattered iradiance per unit incident irradiance assuming incident light polarised 
% parallel to the scattering plane 
% Parlrradiance = (S(l,:) - S(2,:));

% Polarisation Ratio 
P = - (S (2,:) ./ S(l, :));
% Degree of Polarisation 
magP = abs(P);

figure plot(ang, magP)

figure plot(ang, P)

A.5 General Comments

It should be noted in this stage that all input parameters have to be expressed in the micro­

range. For example and for the input parameter of size x, the wavelength of say 514nm  

has to be re-formulated as 0.514fim. As a result to calculate x  at the command prompt 

one should type

>> l a m b d a  = 0 . 5 1 4 ;

>> k = 2 * p i  /  l a m b d a ;

»  r  = [ 1 . 0  1 . 1 ] ;
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>> x = k .*  r ;

>>

where the two layered sphere has a core radius of 1 fim  and overall radius 1.1 fim , i.e. the 

thickness of the outmost layer is 0.1 fim.

The reader is also reminded that MATLAB, calculates angles in radians and as a result 

all angles must be printed in radians. That is to say, to define the input parameter t h e t a  

one should type

>> t h e t a  = l i n s p a c e ( 0 , p i , 1 0 0 0 ) ;

where a linear space of 1000 discrete values has been generated from 0 to i t  radians, 

corresponding to an angle 8 of 0° to 180°.

A.6 Calculation of Scattered Intensity

In order to calculate the scattered light intensity from the 2—layer sphere described above, 

the Matlab function n l a y e r  I n t e n s i t y  should be used. However, one must first define 

the corresponding refractive indices per layer (the remainder of the parameters in the 

function follow that of Section A.5), an incident laser power (e.g. 2mW) in fiW  (i.e. 

2000) and define the polarisation state. As a result at the command prompt

»  m = [ 1 . 1  1 . 3 ] ;  I o  = 2000 ;

>> p o l a r i s a t i o n  = 0;

>> I  = n l a y e r l n t e n s i t y ( x ,  m, I o ,  t h e t a ,  p o l a r i s a t i o n ) ;

>> l o g l  = l o g ( I )  ;

157



11

m =  [1.1000 1.3000] 
r  = [1 .0000 1.1000] urn
X = 514 ran, Io = 2 mW

10

9
SNR = 30 db

8

7

6

5

4

3

2

10 20 40 60 80 100 120 140 160 180
6

Figure A.2: Example of a 2-layer Mie scattering model for unpolarised incidence.

where the last line has been added so as to emphasize the maxima/minima of the calcu­

lated pattern when we need to get a plot. Finally, when we have ’real data’ then some 

noise level is expected, that is to say the signal to noise ratio measured at log(/)  will be 

assumed to be of some decibels (db). To perform this more realistic depiction, we insert 

a noise level of 30db and type on the command prompt

>> n o i s y l  = a w g n ( l o g I ,  3 0 ,  ' m e a s u r e d ' ) ;

>> p l o t ( a n g , l o g l ,  a n g , n o i s y l )

This results in Figure A.2 where all input parameters as discussed in this chapter have 

been introduced and the solid line represents the expected Scattered Intensity without 

noise.

A second example can be seen in Figure A.3. The parameters used are the same apart 

from the fact that the outer layer is of a thicker (i.e. more dense) composition and so 

the refractive index is expected to increase. For this example it has been assumed that
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Figure A.3: A 2-layer Mie scattering model for unpolarised incidence but with a denser 
cell wall.

m 2 =  1.55. Note that increasing the outer refractive index resulted in increasing the 

number of oscillations within the inner cell and as such the number of oscillations that 

appear in Figure A.3.

A.7 Calculation and Plots for Degree of Polarisation

Using the same values for the input parameters x, m and t h e t a  that resulted in Fig­

ure A.2, we can now produce a plot of the degree of polarisation and polarisation ratio. 

That is to say, typing

r a t i o P  = D e g r e e O f P o l a r i s a t i o n ( x ,  m, t h e t a ) ;

one gets the resulting Figure A.4. According to Figure A.4 (left) and the said in Sec­

tions 3.2 and A.6, one would now conclude that a two layer sphere of external radius 

1.1 fim  and core radius 1/im  of corresponding relative refractive indices of 1.3 and 1.1 

respectively, the resulting scattering light will be partially polarised perpendicular to the

159

m =  [1.1000 1.5500] 
r =[1.0000 1.1000] nm
X = 514 nm, Io = 2 m W



iS

i
i

Figure A.4: For a 2-layer Mie scattering model: (Left) The scattered intensity’s degree of 
polarisation; (Right) he scattered intensity’s polarisation ratio for 2-layer Mie scattering 
model.

scattering plane for

■0 e  {[0,0.3) U [0.56,0.61) U [1.36,1.5) U [1.9,2) U [2.08,2.25) U [2.88,3.12)} .

In all other angular regions the scattered light is partially polarised perpendicular to 

the scattering plane.
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Appendix B 

Matlab implementation of a 2-layer 

model

B.l Impementation of Wyatt’s Rayleigh-Debye model

% P.J. Wyatt (1968), App.Opt. 7(10).
% S. aureous (cocci)

fprintf('Structural Information of the Cell... \n') 

t = input('cell wall thickness, in micro m : ');

a = input('relative radius of the spherical body, in micro m : ');

ml = input('nucleus and cytoplasm: relative refractive index (range 
from 1.00 to 1.2): ');

m2 = input('cell wall: relative refractive index (range from 1.00 to 
1 . 2 ) :  ' ) ;

fprintf('Experimental Considerations... \n')

Io = input('power of laser intensity in micro Watt : '); 

lamda = input('wavelength in micro m : '); 

k = 2*pi/lamda;
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theta = linspace (1,180,91); 

theta_rad = (pi/180).*theta; 

u = (2*k*a).*(sin(theta_rad./2)); 

v = (2*k*(a-t)).*(sin(theta_rad./2));

Gu = (3./(u. “3) ) .* (sin (u)-u. *cos (u));

Gv = (3. / (v. “3)) . * (sin (v)-v. *cos (v) ) ;

R1 = (4/3)*pi*(a'3).*Gu;

R2 = (4/3) *pi* ( (a-t) *3) . *Gv; 

ssl = (k~3).*(((ml-1).*R1)+((m2-ml).*R2)) 

SI = complex(0, ssl); magSl = abs(Sl); 

r = sqrt(a"2-t"2);

IscaWyatt = (Io/(2*((k*r)~2))).*(magSl."2

% semilogy(theta,IscaWyatt) ;
% figure
% semilogy(theta_rad,IscaWyatt);



Appendix C

Matlab Implementation of n-layer 

generalised Rayleigh-Debye models

C.l Implementation of the n-layer spherical model

We provide the Matlab function for the n-layer spherical model. The programming func­

tions mirror the mathematical expressions of Chapter 2. In as much, we do not go into 

further explanations or examples as those are reported within the main body of our work. 

To obtain results please follow procedures similar to those outlined in Appendix A.6.

C.1.1 Finding the coefficients for the Scattering Functions

function J = Bessel(m,r,theta) '

% The Bessel function of order 2/3, where
% m is the relative refractive index of the ith layer
% and r is the radius of the boundary of the 1th compartment

k = 2*pi/0.635;

x = 2*k*m*r.*sin(theta./2);

J = sqrt(2./(pi.*x)) . * (((sin(x) - x .* cos(x)) ./ x));

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function K = Coeff(m,r,theta)
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\% The coefficients to be multiplied on the Scattering Function 

k = 2*pi/0.635;

K = (m-1) .* sqrt((r./((2*k*m).*sin(theta./2))).“3);

C.1.2 The scattering am plitude function

function S = nlayerSph(m, r, theta)

k = 2 * pi / 0.653;

ang = length(theta);

n = length(r);

if length(r) ~= length(m)
error('Vectors m and r must have the same dimensions')

end

K = zeros(n,ang); G = zeros(n,ang);

for i = l:n
G (i, :) = Bessel(m(i),r(i),theta);
K (i,:) = Coeff(m(i),r(i),theta);

end

KG = K .* G;

Kprevious = zeros(n,ang); Gprevious = zeros(n,ang);

for i = 2:n
Gprevious(i,:) = Bessel(m(i),r (i—1),theta);
Kprevious(i,:) = Coeff(m(i),r (i—1),theta);

end

KGprevious = Kprevious . * Gprevious;

Contributions = sum(KG - KGprevious);

S = [((k*sqrt(2*pi)).*(Contributions)).~2;
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((k*sqrt(2*pi)) .* (Contributions) .* cos(theta)).~ 2 ];

C.1.3 Calculation of the Intensity

% I = nlayerlntensitymRDG(r, m, Io, theta, polarisation);
%

%

%
%

%

Io is the incident light's power.
x.is the size parameter given by (2*pi/wavelength).*r 
Polarisation is an option for incident light polarisation 
state as opposed to the reference scattering plane:

%
%
% Polarisation = 0 ==> unpolarised

Polarisation = 1 ==> perpendicular
Polarisation = 2 ==> parallel

function I = nlayerlntensitymRDG(r, m, Io, theta, polarisation)

k = 2*pi/0.514;

S = nlayerSph(m, r, theta);

R = max(r);

if polarisation == 0
% assuming incident light is unpolarised
I = (Io / 2*((k*R)*2)) .* S (1,:) + (Io / 2 * ( (k*R)"2)) .* S(2,:);

elseif polarisation == 1
% assuming incident light is polarised parallel to the scattering plane 
I = (Io / 2 * ((k*R)*2)) .* S (2, :); 

elseif polarisation == 2
% assuming incident light is polarised perpendicular to the scattering plane
I = (Io / 2 * ( (k*R)“2 ) )  .* S(l,:);

C.1.4 Calculating the Relative Difference: 
generalised mRDG versus Mie exact solution

clc fprintf('THIS WILL TAKE SOME TIME... Please be patient \n') 

theta = linspace(0.0175, pi, 91); 

k = 2 * pi / 0.635;

end
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r = l i n s p a c e (0 .5 ,1 .3 ,1 5 );

nlayers = input('Enter number of layers (integer): '); 

nlayers = floor (nlayers);

runs = input('Enter number of runs (integer): ');

runs = floor(runs);

m = linspace(1.005,1•4,15);

error = zeros(length(m),length(r));

m_e = zeros(1,length(m));

for j = 1:length(r)
for m_values = 1:length(m)

mlayers = ((m(m_values))-1) .* rand(l, nlayers) + 1; 
m_e(m_values) = mean(mlayers); 
rlayers = zeros(runs, nlayers);
I_mRDG = zeros (runs,length(theta));
I_mie = zeros(runs,length(theta));
I_mie_zero = zeros(1,runs); 
min_I_mRDG = zeros(1,runs); 
for i = l:runs

rlayers(i,nlayers) = r(j); 
for 1 = 1 : (nlayers-1) 

index = nlayers-1;
rlayers(i,index) = rand * rlayers(i,(index+1));

end

cd d:\matlabR12\work\nLayersSmRDG
I_mRDG(i,:) = nlayerlntensitymRDG(rlayers(i,:), mlayers, 200, theta, 0) 
xlayers = k .* rlayers; 
min_I_mRDG(i) = min(I_mRDG(i,:)); 
cd D:\matlabR12\work\nLayersMie
I_mie(i,:) = nlayerlntensity(xlayers(i,:), mlayers, 2000, theta, 0); 
I_mie_zero(i) = nlayerlntensity(xlayers(i, :), mlayers, 2000, 0, 0);

end
keeper = a b s ((log(I_mie) - log(I_mRDG))); 
num_error = (sum(keeper.'));
den_error = (length(theta)+1) * (log(I_mie_zero) - log(min_I_mRDG));
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run_error = num_error . / den_error; 
error(j,m_values) = mean(run_error);

end
number_iteration = length(r) - j;
fprintf('processing... Remaining Iterations: %g.\n\n', number_iteration)

end

rel_diff = mean(error); all_rel_diff = mean(rel_diff);
fprintf('END.\b MEAN TOTAL OF RELATIVE DIFFERENCE IS %g.\n', all_rel_diff)

% for better representation we round the error 
NewError = error; for i = 1:length(r) 

for j = 1:length(m)
if NewError(i,j) < 0.1

NewError(i, j) = 0;
elseif error(i,j) > 0.1 & error(i,j) < 0.2

NewError(i,j) = O M O

elseif error(i,j) > 0.2 & error(i,j) < 0.3
NewError(i,j) = 0.2;

elseif error(i,j) > 0.3 & error (i,j) < 0.4
NewError(i,j) = 0.3;

else
NewError(i, j) = 0.4;

end
end

end

% no need to worry about irregularly spaced m,r values 
% in response.to (error) 10x10 matrix...
% Matlab will take care of it automatically !!!!!!
% figure
% contourf(r,m_e,error); colormap gray 
% figure
% contourf(r,m_e,NewError); colormap gray 

figure contourf(NewError); colormap gray

C.2 Implementation of the n-layer ellipsoidal model 
C.2.1 The Assymetric Size D istribution

function pD = AsymSizeDistr(D, params)
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%
% SizeDistr(Size, Parameters), is the Asymmetric Size Distribution function.
% This function returns a matrix evaluated at Size values array and with the 
% parameters being the three element vector [Do deltaLeft deltaRight].
% To be more specific:
%
% pD = AsymSizeDistr(SizeVariable, [Do deltaL deltaR])
%
% where Do is the average size and delta R and L is the width of the distribution 
% (curve) for D < Do and D > Do respectively.
% In general delta is approximately equal to 3*sigma / Do;
% sigma being the variability measure 
% of the distribution assuming symmetry.
%

fprintf(' ATTENTION: You must always define the internal variable as 
D, in micro meters. \n\n')

if length(params) < 3

error('The AssymetricSizeDistribution function needs at least three parameters.');

elseif params(1) == 0,

error('The AssymetricSizeDistribution function needs a non-zero average size or mode.'); 

elseif params(2) == 0,

error('The AssymetricSizeDistribution function needs a non-zero distribution width.'); 

elseif params(3) = = 0 ,

error('The AssymetricSizeDistribution function needs a non-zero distribution width.');

end

Do = params(1);

deltaL = params (2); deltaR = params (3);

Z = zeros(1, length(D)); for i = 1:length(D) 
if D(i) > Do

Z(i) = 1.0824 * ( (D(i) - Do) / (deltaR * Do));
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elseif D(i) < Do
Z (i) = 1.0824 * ( (D(i) - Do) / (deltaL * Do));

end
end

pDo = 0; pD = zeros(1, length(D)); for k = 1:length(D) 
if Z(k) < -1

pD(k) = pDo; 
elseif Z(k) > 1 

pD(k) = pDo;
else

pD (k) = (1 - (Z (k) *2)) *4;
end

end

% -----------------------------------------------------

s_new = sort(s);
Ps_new=zeros(1,sample);

for j=l:sample
Ps_new(j) = AsymSizeDistr(s_new(j), [1 0.40 0.2]);

end

figure plot(s_new, Ps_new, 'ro')

C.2.2 Inpu t estimation functions

function K = eCoeff(m,s,t)

% m is the relative refractive index of the compartments
% s is the length of the minor-axis of the ellipsoid form
% t is the axial ratio

k = 2*pi/0.635;

K = 2 * (k~3) * t .* (s.'3) .* (m-1);

%----------------------------------------------

function v = Limits(s_layer, t, alpha, phi, theta)
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% change degrees to radians 
alpha = pi . * alpha ./ 180;

theta = pi .* theta ./ 180;

phi = pi . * phi ./ 180;

sqcosinebeta = (-cos(alpha) .* sin(theta./2) + sin(alpha) * cos(phi) 
.* cos(theta./2)).*2;

sqsinebeta = 1 - (sqcosinebeta);

multiplier = sqrt((t“2) .* sqcosinebeta + sqsinebeta); 

v = s_layer .* multiplier;

C.2.3 Calculation of Scattering Amplitude and Intensity

% s, t, alpha, theta, phi
function S = ScaAmp(s, m, t, alpha, phi, theta)

% orientation of the cell 
k = 2*pi/0.635;

K = eCoeff(m,s,t); nlayers = length(s);

KG = zeros(nlayers,length(theta));

for i = 1:nlayers
v = Limits(s(i), t, alpha, phi, theta); 
u = (2*k*m(i)) .* sin (theta.1 2 ) .* v;
K G (i,:) = K(i) .* ( (sin (u) - u.*cos(u)) ./ (u.“3));

end

KGprevious = zeros(nlayers,length(theta));

for i = 2:nlayers
v = Limits(s(i—1), t, alpha, phi, theta); 
u = (2*k*m(i)) .* sin(theta./2) .* v;
KGprevious(i,:) = K(i) .* ((sin(u)-u.*cos(u)) ./ (u."3));

end

Sperp = sum(KG - KGprevious);
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Sparallel = Sperp .* cos(theta);

S = [Sperp; Sparallel];

% -----------------------------------------------

function I = nlayerlntensityEmRDG(s, m, t, Io, alpha,phi, theta, polarisation)

%
%
% Io is the incident light's power.
% x is the size parameter given by (2*pi/wavelength).*r
% Polarisation is an option for incident light polarisation
% state as opposed to the reference scattering plane:
% Polarisation = 0 ==> unpolarised
% Polarisation = 1 ==> perpendicular
% Polarisation = 2 ==> parallel

k = 2*pi/lamda;

S = ScaAmp(s, m, t, alpha,phi, theta);

R = max(s);

if polarisation == 0
% assuming incident light is unpolarised
I = (Io / 2 * ( (k*R)~ 2 ) ) .* abs(S(1, :)) + (Io / 2 * ( (k*R)*2)) .* abs(S(2,:)); 

elseif polarisation == 1
% assuming incident light is polarised parallel to the scattering plane
I = (Io / 2 * ( (k*R)*2)) .* S (2,:);

elseif polarisation == 2
% assuming incident light is polarised perpendicular to the scattering plane
I = (Io / 2 * ( (k*R)*2)) .* S (1,:);

end
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Appendix D

Matlab Implementation of Monte Carlo

The generation of positions in the three-dimensional space of a cubic volume of length I  is 

achieved in this code by employing the Metropolis technique. Due to memory limitations 

the maximum number of points to be generated is 4000. It starts by issuing initial random 

positions which are then shuffled to create different realisations. At the final stage of the 

algorithm the positions are accepted and plotted. However it is assumed that there are no 

inter-particle forces and inter-penetration is not allowed (see relevant section, Chapter 5).

D.l Description of the MC algorithm and initial parameters

The experiments are performed on a system of N a number of particles. These N a ellip­

soids have different sizes and occupy a spherical space of their largest linear dimension. 

If Ni is the number of particles with largest linear dimension R{ then the number density 

rii and fractional volume fa is

ni = ^ t  h  =  y n ^ 3 C0 -1)

and the total number and fractional volume occupied by the particles is

=  f  = J 2 f i  (D.2)

The steps that describe the algorithm are
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Step I Set initial configuration for the system. All coordinates for the spherical space 

occupied lie in the range [o, £].

Step II Change the system configuration by random displacement of particles sequen­

tially so that: (x , y , z)new —> (x , y, z)Qid +  A U (—£, £) where A is the maximum 

displacement allowed to take place. If A is too small then most displacements will 

be accepted; if too large most displacements will be rejected. To avoid this we set 

the acceptance rate A c so that: 0.30 < A c <  0.80.

Step III If the displaced particle occupies a spherical space that overlaps with another 

particle then return to original position. Otherwise:

1. Accept displacement

2. Update the particle’s coordinates

3. Calculate distance from closest neighbour.

Step IV Update number of configurations generated.

Step V Count the frequency of occurrence of different pair separations.

At the end of the algorithm several plots are generated. We illustrate here (Figure D. 1)

the plots of positions with the corresponding ellipsoids. The plot that follows illustrates

400 particles with random orientation in 3D space.
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Point Cloud (400 events)
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Figure D .l: Positions and ellipsoidal particles generated by the Metropolis MC algo­
rithm. There are 400 particles with maximum acceptance rate set at 60%.



D.2 Matlab code for generation of positions in 3D space

% montecarloVisual .m
%%

% Main program for the Monte Carlo simulations of pair distribution 
% functions and the creation of a series of random realizations of 
% particle positions

% with animation.,.,.

kk=input('Enter total number of frames : '); 

aviobj = avifile('particles.avi','fps',5); 

for frame_index=l:kk 

% Input Parameters
ntot=input('Enter total number of spheres : '); 

fv=input('Enter fractional volume of spheres (< 0.4) : '); 

cnst=input('Enter maximum displacement (< 1) : '); 

npsr=input('Enter number of passes for each realization : '); 

nrlz=input('Enter total number of realizations : '); 

seed=input('Enter seed for random numbers : ');

vol=1.0; rho=ntot/vol; d a = (6.0*fv/pi/rho)“ (1.0/3.0); nd=fix(1.0/da);

ncell=nd*nd*nd;

dl=l.0/nd;

ntpas=npsr*nrlz;

dinc=l.0/ntot/ntpas;

rgmax=5.; srgmax=rgmax*da;

if srgmax >= 0.5 
srgmax=0.5;
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end

rgmax=srgmax/da; 

del=cnst*da; 

if ncell < ntot
fprintf('\n Number of Spheres > Number of Cells ==> STOP ! \n' 
break 

end

if dl <= da
fprintf('\n Diameter > Cell Length ==> STOP ! \n'); 
break 

end

fpos=fopen('pos.dat','w+');

fpdf=fopen('pdf.dat','w+');

% initial regular setting of spheres 
xrow=zeros(1,ntot);

yrow=zeros(1,ntot);

zrow=zeros(1,ntot);

da2=ones(ntot,ntot);

da2=da*da*da2;
np=0;

for i=0:nd-l 
if np > ntot 

break 
else

for j=0:nd-l 
if np > ntot 

break 
else

for k=0:nd-l 
np=np+l; 
if np > ntot 

break
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xtry=xtry-fix(2.O*xtry-erow); 
ytry=ytry-fix(2.O*ytry-erow); 
ztry=ztry-fix(2.O*ztry-erow); 
xtry=xtry-fix(2.O*xtry-erow); 
ytry=ytry-fix(2.O*ytry-erow); 
ztry=ztry-fix(2.O*ztry-erow);

% check separation between pairs of spheres 
rx=xtry'*erow-ecol*xrow; 
ry=ytry'*erow-ecol*yrow; 
rz=ztry'*erow-ecol*zrow; 
rx=rx-fix(2.0*rx); 
ry=ry-fix(2.0*ry); 
rz=rz-fix (2.0*rz); 
rr2=rx.~2+ry.~2+rz.“2; 
for i=l:ntot

rr2(i, i)=da*da;
end
gt=rr2 >= da2; 
for i=l:ntot

move (i) =all (gt (i, :) ) ; 
end
stay=ecol-move; 
xrow=move'.*xtry+stay' .*xrow; 
yrow=move'.*ytry+stay'.*yrow; 
zrow=move'.*ztry+stay'.*zrow; 
for i=l:ntot

acp=acp+dinc*move(i); 
ovp=ovp+dinc*stay (i); 

end 
end

fprintf('\n acceptance rate = %8.4f \n',acp);

fprintf(' overlaping rate = %8.4f \n',ovp);

fprintf('\n Initial Shuffling Done !!! \n');

% Monte Carlo shuffling 
ir=0; acp=0.0; ovp=0.0;

fprintf('\n Monte Carlo Shuffling Starts ... \n' 

for ip=l:ntpas
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ipp=ip-npsr; 
while ipp > 0 

ipp=ipp-npsr; 
end

ranx=erow-2.0*rand(1,ntot); 
rany=erow-2.0*rand(1,ntot); 
ranz=erow-2.0*rand(1,ntot); 
xtry=xrow+del*ranx; 
ytry=yrow+del*rany; 
ztry=zrow+del*ranz; 
xtry=xtry-fix(2.0*xtry-erow); 
ytry=ytry-fix(2.0*ytry-erow); 
ztry=ztry-fix(2.0*ztry-erow) ; 
xtry=xtry-fix(2.0*xtry-erow); 
ytry=ytry-fix(2.0*ytry-erow) ; 
ztry=ztry-fix(2.0*ztry-erow) ;

% check separation between pairs of spheres 
rx=xtry'*erow-ecol*xrow; 
ry=ytry'*erow-ecol*yrow; 
rz=ztry'*erow-ecol*zrow; 
rx=rx-fix(2.0*rx); 
ry=ry-fix(2.0*ry); 
rz=rz-fix(2.0*rz); 
rr2=rx.“2+ry.*2+rz.~2; 
for i=l:ntot

rr2(i,i)=da*da; 
end
gt=rr2 >= da2; 
for i=l:ntot

move(i)=all (gt (i, :)); 
end
stay=ecol-move; 
xrow=move' .*xtry+stay'.*xrow; 
yrow=move'.*ytry+stay'.*yrow; 
zrow=move'.*ztry+stay'.*zrow; 
for i=l:ntot

acp=acp+dinc*move(i); 
ovp=ovp+dinc*stay(i); 

end

% tabulate the occurrence of pair separations 
fmn=f;
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rx=xrow'*erow-ecol*xrow; 
ry=yrow'*erow-ecol*yrow; 
rz=zrow'*erow-ecol*zrow; 
rx=rx-fix(2.0*rx); 
ry=ry-fix(2.0*ry); 
rz=rz-fix(2.0*rz); 
rr2=rx.*2+ry."2+rz.*2; 
ix=fix((sqrt(rr2/da/da)-1.0)/dgr)+1; 
for i=l:ntot 

for j=l:ntot
if ix(i,j) >= 1 & ix(i,j) <= mg 

fmn (ix (i, j)) =fmn (ix (i, j)) +1.0; 
end 

end 
end 
f=fmn;

if ipp == 0 
ir=ir+l;
fprintf('\n realization = %6u \n',ir);
fprintf(' pass = %6u \n',ip);
fprintf(' acceptance rate = %8.4f \n',acp);
fprintf(' overlaping rate = %8.4f \n',ovp);

% output position
fprintf(fpos,'%6u \n',ir); 
for np=l:ntot

fprintf(fpos,' %8.4f %8.4f %8.4f \n',xrow(np),yrow(np),zrow(np)); 
end 

end 
end

fprintf(' \n\n');

fprintf(' total acceptance rate = %8.4f \n',acp);

fprintf(' total overlaping rate = %8.4f \n',ovp);

fprintf('\n Monte Carlo Shuffling Done !!! \n');

% output pair distribution function 
for jj=l:mg

9<jj)=f(jj)/ddcst/ddr(jj)/ntpas; 
fprintf(fpdf,'%8.4f %8.4f \n',r (jj),g (jj)); 

end
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fclose(fpos); fclose(fpdf);

% save the positions of the spheres in 3D space 
X = [xrow.',yrow.',zrow.'];
save('Sphere3Dpos.txt','X','-ASCII','-TABS');

% plot all pairs of spheres in 3D space 
plot3(xrow,yrow,zrow,'bo') grid on 
% and animate
M(frame_index) = getframe;

aviobj = addframe(aviobj,M(frame_index));

% plot pair distribution function 
% (requires output of pypdf.m)

load pdf.dat -ascii; figure;

plot(pdf(:,1),p d f (:,2),'b-');

% axis([0.0,5.0,0.0,4.0]); 
xlabel('r/d '); ylabel('g(r) ');

legend('Monte Carlo');

end

% end the animating sequence kk 

% and preview 10 times at 1 frame per sec 

figure grid off axis([0.0,0.2,0.4,0.6, 0.8,1]); 

xlabel('x'); ylabel('y'); zlabel('z'); 5 

box on; movie(M,10,1)

aviobj = close(aviobj); saveas *.avi file 

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

% Visualise ellipsoids at [xrow, yrow, zrow] from Monte Carlo simulations
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% G. Chliveros, Sheffield Hallam University, MERI,
% Geometric Modelling & Pattern Recognition Group

figure

plot3(xrow, yrow,zrow,' .')

scale = input('Enter scale of ellipsoid dimension (e.g. 10" (-3) for 
micrometers): ');

s = 1.1 * (scale);

yr = s;

zr = s;

for i = 1:length(xrow)

t = 0.1 + 12.9 * rand(1,1); 

xr = t*s;

[el,e2,e3] = ellipsoid(0,0,0, xr,yr,zr); 

i

visual = surf(el + xrow(i), e2 + yrow(i), e3 + zrow(i)); 

zdir = [ 0 0 1 ] ;

center = [xrow(i) yrow(i) zrow(i)]; 

alpha = 180*rand(1,1) 

rotate(visual,zdir,alpha,center); 

for i = 1 

hold on

end

end
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Appendix E 

Realisation of Experimental Setup

The realisation of the experimental setup is the Great Britain patent application 0406055.4 

we have submitted on the 17—th of March, 2004. The patent document outlines a pro­

posed experimental setup with algorithms for data acquisition and preprocessing. The 

handling of the angular scattering patterns, that is to say, the post-processing, is briefly 

described and is the n —layered generalised Rayleigh-Debye approximation, our main 

contribution as outlined in this work.

We have included only the part that state the claims within this patent and a general 

description. The receipt from our submission the Patent Office is also included.
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Claims:
1. Apparatus for particle analysis comprising: 

a radiation source;

5

a sample chamber configured to contain a sample, said sam ple comprising 

a plurality of particles;

a first array of radiation detectors;

10

a second array of radiation detectors;

said device configured to collect data from said radiation detectors at least 

at a first time and a second time, wherein said second array occupies a first

15 position at said first time and a second position at said second time;

a processor configured to process said collected data, said processing 

determining at least one predetermined parameter of said particles.

2 0 2. A device for particle analysis as claimed in claim 1 wherein said

radiation source comprises a laser; and

said arrays of radiation detectors are configured to detect visible light.

25 3. A device for particle analysis as claimed in claim 1 or claim 2

wherein each said array of radiation detectors comprises at least one photo­

multiplier tube.

4. A device for particle analysis as claimed in any preceding claim

3 o wherein each said array of radiation detectors comprises:

an array of optical fibres;
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a photo-multiplier tube;

m eans to sequentially connect each optical fibre of said array of optical 

fibres to said photo-multiplier tube, and collect data at said photo-multiplier tube 

5 from each said optical fibre.

5. A device for particle analysis as claimed in any preceding claim 

wherein said first array of radiation detectors is mounted on a first support, and 

each radiation detector of said first array of radiation detectors is located at the

10 same distance from said sample chamber;

said second array of radiation detectors is mounted on a second support, 

and each radiation detector of said second array of radiation detectors is located 

at the sam e distance from said sample chamber;

15

6. A device for particle analysis as claimed in any preceding claim 

wherein said second array of radiation detectors is movable relative to said 

sample chamber.

20 7. A device for particle analysis as claimed in any preceding claim

wherein said second array of radiation detectors is rotatable about said sample 

chamber.

8. A device for particle analysis as claimed in claim 4 wherein said

2 5 optical fibres comprise non-coherent polymer fibres.

9. A device for particle analysis as claimed in any preceding claim 

wherein said predetermined parameter comprises information relating to any one  

of the following:

30

particle shape

particle size
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particle species  

particle refractive index

5

refractive index of at least one inferred layer of said particle 

particle motion

10 10. A device for particle analysis as claimed in any preceding claim,

wherein said processing determining at least one predetermined parameter of 

said particles comprises removing collected data arising from non-motile 

particles.

15 11. A device for particle analysis as claimed in any preceding claim

wherein said processing determining at least one predetermined parameter of 

said particles comprises comparing a measured predetermined parameter value 

with a series of predefined parameter values from a database.

2 0 12. A device for particle analysis as claimed in any preceding claim

wherein said processing determining at least one predetermined parameter of 

said particles comprises:

obtaining measured intensity data from said first and second array of 

25 radiation detectors

fitting said measured intensity data to a predicted function of said particles

13. A device for particle analysis as claimed in any preceding claim

3 0 wherein said radiation source is configured to generate radiation at a range of

different wavelengths.
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14. A device for particle analysis as claimed in any preceding claim 

wherein said radiation source is configured to generate radiation at a range of 

different intensities.

5 15. A method of particle analysis comprising:

illuminating a sample with radiation, said sample comprising a plurality of 

particles;

l  o collecting a first data set from a first array of radiation detectors;

collecting a second data set from a second array of radiation detectors;

collecting said first data set and said second data set at least at a first time

15 and a second time, wherein said second array occupies a first position at said 

first time and a second position at said second time;

processing said collected data to determine at least one predetermined 

parameter of said particles

20

16. A method of particle analysis as claimed in claim 15 further 

comprising:

providing said illumination using a laser; and

25

said arrays of radiation detectors are configured to detect visible light.

17. A method of particle analysis as claimed in claim 15 or claim 16 

wherein each said array of radiation detectors comprises at least one photo-

30 multiplier tube.

18. A method of particle analysis as claimed in any one of claims 15 to 

17 wherein each said array of radiation detectors comprises:
P1111. sp ec



- 33 -

an array of optical fibres; 

a photo-multiplier tube;

5

and said method further comprises sequentially connecting each optical 

fibre of said array of optical fibres to said photo-multiplier tube, and

collecting data at said photo-multiplier tube from each said optical fibre.

10
19. A method of particle analysis as claimed in any one of claims 15 to

18 comprising:

mounting said first array of radiation detectors on a first support such that 

15 each radiation detector of said first array of radiation detectors is located at the 

sam e distance from said sample;

mounting said second array of radiation detectors is on a second support, 

such that each radiation detector of said second array of radiation detectors is

2 o located at the sam e distance from said sample;

20. A method of particle analysis as claimed in any one of claims 15 to

19 comprising:

25 moving said second array of radiation detectors relative to said sample.

21. A method of particle analysis as claimed in any one of claims 15 to

20 comprising:

3 o rotating said second array of radiation detectors about said sample.

22. A method of particle analysis as claimed in claim 18 wherein said

optical fibres comprise non-coherent polymer fibres.
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5

15

23. A method of particle analysis as claimed in any one of claims 15 to 

22 wherein said predetermined parameter comprises information relating to any 

one of the following:

particle shape  

particle size  

10 particle species

particle refractive index

refractive index of at least one inferred layer of said particle 

particle motion

24. A method of particle analysis as claimed in any one of claims 15 to 

23 wherein said processing determining at least one predetermined parameter of 

2 0 said particles comprises removing collected data arising from non-motile 

particles.

25. A method of particle analysis as claimed in any one of claims 15 to

24 wherein said processing determining at least one predetermined parameter of 

25 said particles comprises:

comparing a measured predetermined parameter value with a series of 

predefined parameter values from a database.

3 o 26. A method of particle analysis as claimed in any one of claims 15 to

25 wherein said processing determining at least one predetermined parameter of 

said particles comprises:
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obtaining measured intensity data from said first and second array of 

radiation detectors

fitting said measured intensity data to a predicted function of said particles

5 '

27. A method of particle analysis as claimed in any one of claims 15 to

26 comprising illuminating said sample with radiation, said radiation being 

generated at least at two different wavelengths.

10 28. A method of particle analysis as claimed in any one of claims 15 to

27 comprising illuminating said sample with radiation, said radiation being 

generated at least at two different intensities.

29. A device for particle analysis comprising:

15

a laser source;

a sample chamber configured to contain a sample comprising a plurality of 

particles;

20

a first ring, 

a second ring;

25 a plurality of radiation detectors disposed on said first ring;

a plurality of radiation detectors disposed on said second ring; 

wherein said second ring is rotatable about said sample chamber;

30

m eans to collect light intensity data from said plurality of radiation detectors
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m eans to process said collected light intensity data to infer information 

about said particles.
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Abstract

METHOD AND APPARATUS FOR PARTICLE ANALYSIS
There is provided a method and apparatus for particle analysis comprising a 

radiation source, a sample chamber configured to contain a sample, said sample 

5 comprising a plurality of particles, a first array of radiation detectors, a second  

array of radiation detectors, wherein the apparatus is configured to collect data 

from the radiation detectors at least at a first time and a second time, wherein the 

second array occupies a first position at the first time and a second position at the 

second time, and a processor configured to process the collected data, the 

10 processing determining at least one predetermined parameter of said particles, 

such as size, shape, internal morphology or type of particle

15 Fig. 3
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